Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

A highly sensitive fluorescent probe for selective detection of cyste-ine/homocysteine from

glutathione and its application in living cells and tissues

Ziyan Zhou^{a, #}, Guofeng Duan^{b, #}, Yingying Wang^a, Shikui Yang^a, Xuyan Liu^a, Liying Zhang^c, Runing Sun^b, Yungen Xu, ^dYueqing Gu^a, Xiaoming Zha^{a, *}

^a Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.

^b Department of Traditional Chinese Medicine, Senior Vocational School, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.

^c Key Laboratory of Traditional Chinese Medicine Research and Development of Hebei Province, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde 067000, China.

^d Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.

*Authors for correspondence. Email address: xmzha@cpu.edu.cn (X. Z.)

These authors contributed equally to this work.

Contents

Fig. S1 ¹ H-NMR of NIPY-OH
Fig. S2 HRMS spectrum of reaction products of the probe NIPY-NBD with Cys
Fig. S3 HRMS spectrum of reaction products of the probe NIPY-NBD with Hcy
Fig. S4 HRMS spectrum of reaction products of the probe NIPY-NBD with GSH
Fig. S5 ¹ H-NMR of the probe NIPY-NBD
Fig. S6 ¹³ C-NMR of the probe NIPY-NBD
Fig. S7 HRMS spectrum of the probe NIPY-NBD
Fig. S8 The response time fluorescence map of the probe NIPY-NBD
Table. S1 Comparison of fluorescent probes for Cys/Hcy from GSH with NBD group. S12

ferences

Fig. S1 ¹H-NMR of NIPY-OH

Fig. S2 HRMS spectrum of reaction products of the probe NIPY-NBD with Cys.

Fig. S3 HRMS spectrum of reaction products of the probe NIPY-NBD with Hcy.

Fig. S4 HRMS spectrum of reaction products of the probe NIPY-NBD with GSH.

Fig. S5 ¹H-NMR of the probe NIPY-NBD.

Fig. S6 ¹³C-NMR of the probe NIPY-NBD.

Fig. S8 The response time fluorescence map of the probe **NIPY-NBD** (10 μ M) with time after adding 20 μ M Cys/Hcy and GSH in PBS-DMSO buffer (v/v = 1/1). (a,d: adding Cys, b,e: adding Hcy, c,f: adding GSH, a-c: $\lambda_{ex/em} = 310 / 520$ nm, d-f: $\lambda_{ex/em} = 470 / 550$ nm).

Probes	Fluorescence enhancement (at the concentration of Cys)	Response time/Limit of detection	Spectral separation Probe between two emissions/Stokes Shift	Reference
Chem. Commun, 2015	81 fold (I403/I519) at 320 μM	10 min; For Cys and GSH - 130 and 70 nM, respectively	λ_{ex1} =470 nm ; λ_{em1} =540 nm λ_{ex2} =470 nm ; λ_{em2} =585 nm 70 & 115 nm	1
$ \begin{array}{c} \stackrel{O-N}{\underset{O}{\overset{O}+\overset{N}{\underset{O}{\overset{O}+\overset{N}{\underset{O}{\overset{O}+\overset{N}{\underset{O}{\overset{O}+\overset{O}{\underset{O}{\overset{O}{\atopO}{\underset{O}{\overset{O}{\atopO}{\underset{O}{\overset{O}{\underset{O}{\overset{O}{\atopO}{\atopO}{\atopO}{\atopO}{\atopO}{\atopO}}}}}}}}}$	100 fold at 100 μM	5 min /20 min; For Cys, Hcy and GSH - 27, 25 and 16 nM, respectively	λ_{ex1} =470 nm ; λ_{em1} =550 nm λ_{ex2} =670 nm ; λ_{em2} =716 nm 80 & 46 nm	2

Table. S1 Comparison of fluorescent probes for Cys/Hcy from GSH with NBD group.

	70 fold at 30 µM	120 min For Cys, Hcy and GSH- 2100, 2700 and 6400 nM, respectively	λ_{ex1} =650 nm; λ_{em1} =705 nm; λ_{ex2} =476 nm; λ_{em2} =545 nm; 55 & 79 nm	3
Anal. Chem, 2016				

CN_CN O-N NO2 Sens. Actuators B-Chem, 2017	54 fold at 20 µM	15 min; For Cys, Hcy and GSH - 21, 17 and 26 nM, respectively	λ_{ex1} =475 nm; λ_{em1} =560 nm λ_{ex2} =560 nm; λ_{em2} =700 nm 85 & 140 nm	4
$\begin{array}{c} & MeO & OMe \\ & & & & \\ & & &$	30 fold at 10 mM	10 min; For Cys, Hcy and GSH - 80, 170 and 50 nM, respectively	λ_{ex1} =470 nm; λ_{em1} =540 nm; λ_{ex2} =670 nm; λ_{em2} =730 nm 70 & 60 nm	5
Tetrahedron, 2017	118 fold at 100 µM	12 min; For Cys, Hcy – 35 and 26 nM	λ _{ex} =470 nm; λ _{em} =550 nm; 80 nm	6

J.Mater. Chem. B, 2017	*	30 min; For Cys - 22 nM	λ_{ex1} =466 nm; λ_{em1} =540 nm; λ_{ex2} =650 nm; λ_{em2} =735 nm 74 & 85 nm	7
-------------------------------	---	----------------------------	---	---

Sens. Actuators B-Chem, 2017	50 fold at 30 µM	5 min For Cys and GSH- 68 and 81 nM	λ_{ex1} =480 nm; λ_{em1} =540 nm; λ_{ex2} =670 nm; λ_{em2} =702 nm; 60 & 32 nm	11
$ \begin{array}{c} $	103 fold at 100 μM	10 min; For Cys, Hcy - 176 and 124 nM	λ _{ex} =460 nm; λ _{em} =565 nm; 105 nm	12
NO_2 N O N O V N O V V V V V V V V V V	10 fold at 120 μM	15 min / 28 min; For Cys, Hcy and GSH –12, 13 and 6 nM, respectively	λ_{ex1} =502 nm; λ_{em1} =610 nm; λ_{ex2} =487 nm; λ_{em2} =547 nm 108 & 60 nm	13

Sens. Actuators B-Chem, 2018			

*The data was not mentioned.

References

- 1 Y. Zhang, X. Shao, Y. Wang, F. Pan, R. Kang, F. Peng, Z. Huang, W. Zhang and W. Zhao, Chem. Commun., 2015, 51, 4245-8.
- 2 Q. Hu, C. Yu, X. Xia, F. Zeng and S. Wu, Biosens. Bioelectron., 2016, 81, 341-348.
- 3 W. Chen, H. Luo, X. Liu, J. W. Foley and X. Song, Anal. Chem., 2016, 88, 3638-3646.
- 4 P. Wang, Y. Wang, N. Li, J. Huang, Q. Wang and Y. Gu, Sens. Actuators B Chem., 2017, 245, 297-304.
- 5 H. J. Xiang, H. P. Tham, M. D. Nguyen, S. Z. Fiona Phua, W. Q. Lim, J. G. Liu and Y. Zhao, Chem. Commun., 2017, 53, 5220–5223.
- 6 C. Zhang, S. Wu, Z. Xi and L. Yi, Tetrahedron, 2017, 73, 6651–6656.
- 7 Z. Ye, C. Duan, Q. Hu, Y. Zhang, C. Qin and L. Zeng, J. Mater. Chem. B, 2017, 5, 3600–3606.
- 8 J. Wang, L. Niu, J. Huang, Z. Yan and J. Wang, Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2017, 192, 52.
- 9 X. Yang, L. He, K. Xu and W. Lin, Anal. Chim. Acta, 2017, 981, 86–93.
- 10 X. Qiu, X. Jiao, C. Liu, D. Zheng, K. Huang, Q. Wang, S. He, L. Zhao and X. Zeng, Dyes Pigments, 2017, 140, 212-221.
- 11 J. Xu, J. Pan, Y. Zhang, J. Liu, L. Zeng and X. Liu, Sens. Actuators B Chem., 2017, 238, 58-65.
- 12 J. Wang, L. Niu, J. Huang, Z. Yan, X. Zhou and J. Wang, Dyes Pigments, 2018, 158, 151-156.
- 13 X. Ren, H. Tian, L. Yang, L. He, Y. Geng, X. Liu and X. Song, Sens. Actuators B Chem., DOI:10.1016/j.snb.2018.04.163.

14 F. Chen, J. Zhang, W. Qu, X. Zhong, H. Liu, J. Ren, H. He, X. Zhang and S. Wang, Sens. Actuators B Chem., 2018, 266, 528–533.