Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

α -Diimine Homologues of Cisplatin: Synthesis, Speciation in

DMSO/Water and Cytotoxicity

Lorenzo Biancalana, Lucinda K. Batchelor, Paul J. Dyson, Stefano Zacchini, Silvia Schoch, Guido

Pampaloni and Fabio Marchetti

Supporting Information

Table of contents	Page/s
Synthesis and characterization of cis -[PtCl ₂ (κ S-DMSO) ₂] (Chart S1)	S2
Synthesis and characterization of K[PtCl ₃ (κS-DMSO)] (Chart S2)	S 3
Synthesis and characterization of 4·(Me ₂ CO) _n (Chart S3)	S4
Tables S1, S2: Selected bond distances (Å) and angles (°) for 4·THF and 5	S5
H-bond network in the solid state structures of 4 • THF and 5 (Figures S1-S2 , Tables	S6-S7
S3-S4)	
Stability studies in DMSO-d ₆ and DMSO-d ₆ /D ₂ O solutions (Charts S4-S10; Tables	S8-S16
S5-S10)	
Chloride/solvent exchange experiment for compound 1	S17
Synthesis of [PtCl ₂ { $\kappa^2 N$ -(HCN(4-C ₆ H ₄ OCOasp)) ₂ }], 7 (Chart S11)	S18
Figures S3-S9. Solid-state IR spectra of 1-6 and [Pt(dmgH) ₂].	S19-S25
Figure S10. Comparative view of IR spectra of 4 and 4 (Me ₂ CO) _n	S26
Figures S11-S27. ¹ H, ¹³ C{ ¹ H} and ¹⁹⁵ Pt{ ¹ H} NMR spectra of 1-7	S27-S43
References and notes	S44

Synthesis and characterization of cis-[PtCl₂(KS-DMSO)₂] (Chart S1)¹

Chart S1. Structure of cis-[PtCl₂(KS-DMSO)₂].

An orange-red solution of K₂[PtCl₄] (570 mg, 1.37 mmol) in H₂O (5 mL) was treated with DMSO (0.40 mL, 5.6 mmol) then stirred at room temperature for 20 hours. The resulting suspension (colourless solid + pale yellow solution) was filtered and the solid was washed with H₂O (2 mL), EtOH (1 mL), Et₂O then dried under vacuum (50°C). Yield: 530 mg, 91%. IR (solid state): \tilde{v} /cm⁻¹ = 3037w, 3010w, 2995w, 2991w, 2926w-sh, 2917w, 2907w-sh, 1412w-sh, 1400w, 1384w, 1315w, 1305w-sh, 1299m, 1153s (v_{S=0}), 1131s (v_{S=0}), 1114m-sh, 1030m-sh, 981m, 941m, 919m, 736m, 689m. ¹H NMR (acetone-d₆): δ /ppm = 3.58 (s + satellites, ³*J*_{HPt} = 22 Hz, CH₃). ¹³C{¹H} NMR (acetone-d₆): δ /ppm = 44.9 (CH₃).¹H NMR (CD₃OD): δ /ppm = 3.57 (s + satellites, ³*J*_{HPt} = 23 Hz, CH₃). ¹⁹⁵Pt{¹H} NMR (DMSO-d₆): δ /ppm = - 3444.

Precipitation of the title compound begins shortly after (*ca.* 15-20 min) the addition of DMSO; note that ageing of the precipitate is important. Performing the filtration after 4 hours, as reported in the literature¹^{a,b} afforded a pale yellow solid (87% yield) with minor differences in the IR spectrum. However, lower yields of Pt- α -diimine complexes **1-4** were obtained when using this material as precursor.

Synthesis and characterization of K[PtCl₃(κ S-DMSO)] (Chart S2) ²

Chart S2. Structure of K[PtCl₃(KS-DMSO)].

A suspension of K₂[PtCl₄] (29 mg, 0.071 mmol) and *cis*-[PtCl₂(κ S-DMSO)₂] (30 mg, 0.071 mmol) in H₂O (3 mL) was stirred at 90°C for 3 hours. The resulting yellow solution was cooled to room temperature and volatiles were removed under vacuum. The yellow solid was suspended in MeOH and filtered, washed with MeOH, Et₂O and dried under vacuum (50°C over P₂O₅). Yield: 30 mg, 51%. K[PtCl₃(κ S-DMSO)] is soluble in DMSO, water, poorly soluble in MeOH and insoluble in Et₂O. Anal. Calcd. for C₂H₆Cl₃KOPtS: C, 5.74; H, 1.44. Found: C, 6.30; H, 1.52. IR (solid state): $\tilde{\nu}$ /cm⁻¹ = 3026w-sh, 3014m, 2925w, 1405w, 1316m, 1300w-sh, 1100s (v_{S=0}), 1030s, 976m, 942m, 928m, 734w, 692m. ¹⁹⁵Pt{¹H} NMR (D₂O): δ /ppm = – 2982. An additional, minor signal in the ¹⁹⁵Pt{¹H} spectrum was observed (– 2848 ppm), presumably due to [PtCl₂(H₂O)(DMSO)]^{-.3}

Synthesis and characterization of $[PtCl_2{\kappa^2N-(HCN(4-C_6H_4OH))_2}]$ acetone solvate,

4·(Me₂CO)_n (Chart S3)

Chart S3. Structure of 4 (numbering refers to C atoms).

A suspension of *cis*-[PtCl₂(κ S-DMSO)₂] and L4 (1:1 mol. ratio) in acetone was stirred at reflux for 1.5-6.5 hours. The reaction mixture (purple red solid + dark red solution) was cooled to room temperature and filtered. The solid was washed with acetone (2 mL, -20 °C), CH₂Cl₂, Et₂O and dried under vacuum (55°C). The isolated material, 4·(Me₂CO)_n, contains variable amounts of acetone, depending on the reaction time and reactant concentration (acetone : 4 molar ratios = 0.5–4; ¹H NMR, CD₃OD). Compound 4·(Me₂CO)_n has similar solubility features as 4; slightly higher solubility in MeOH and THF. IR (solid state): $\tilde{o}/cm^{-1} = 3292m$ (vo-H), 3061m, 3009w, 2958w, 1698s (vc=O), 1693s (vc=O), 1607m-sh, 1592s (vc=N), 1560m, 1501s, 1486s, 1454m, 1366m, 1353m-sh, 1328m, 1299w, 1275m, 1259m, 1233s, 1194m, 1166s, 1109m, 1088m, 1064m, 1010w, 958w, 938m, 884w, 867w, 846w-sh, 834s, 824s-sh, 810s, 752w-br, 723w, 681w-sh, 673w. ¹H NMR (CD₃OD): δ /ppm = 8.81 (s + satellites, ³*J*_{HPt} = 90 Hz, 2H, C1-H), 7.45 (d, ³*J*_{HH} = 8.7 Hz, 4H, C3-H), 6.84 (d, ³*J*_{HH} = 8.8 Hz, 4H), 2.16 (s, Me₂CO); the set of signals for the α -diimine ligand is identical to that of **4**.

Acetone can be removed from $4 \cdot (Me_2CO)_n$ either by suspending the solid in refluxing CH₂Cl₂ or by heating the solid to 110°C under vacuum, as described in the main text. Comparison of IR spectra of $4 \cdot (Me_2CO)_n$ and 4, obtained by the two procedures described above, is shown in Figure S10.

Pt(1)-Cl(1)	2.287(3)	Pt(1)-Cl(2)	2.288(3)
Pt(1)−N(1)	2.025(9)	Pt(1)-N(2)	2.028(8)
N(1)-C(1)	1.290(15)	N(2)-C(2)	1.295(15)
N(1)-C(3)	1.442(15)	N(2)-C(9)	1.420(14)
C(1)-C(2)	1.433(17)		
CI(1)-Pt(1)-CI(2)	87.38(11)	N(1)-Pt(1)-N(2)	79.6(4)
Pt(1)-N(1)-C(1)	113.0(8)	N(1)-C(1)-C(2)	116.5(11)
C(1)-C(2)-N(2)	116.9(11)	C(2)-N(2)-Pt(1)	112.6(7)

Table S1. Selected bond distances (Å) and angles (°) for 4-THF.

Table S2. Selected bond distances (Å) and angles (°) for 5.

Pt(1)-Cl(1)	2.300(2)	Pt(1)-Cl(2)	2.296(2)
Pt(1)-N(1)	1.991(7)	Pt(1)-N(2)	1.966(7)
N(1)-O(1)	1.360(9)	N(2)-O(2)	1.394(9)
C(1)-C(3)	1.481(11)	C(2)-C(4)	1.479(11)
C(1)-C(2)	1.478(11)		
CI(1)-Pt(1)-CI(2)	94.51(8)	N(1)-Pt(1)-N(2)	77.5(3)
Pt(1)-N(1)-C(1)	117.5(5)	N(1)-C(1)-C(2)	113.9(7)
C(1)-C(2)-N(2)	111.7(7)	C(2)-N(2)-Pt(1)	119.4(6)

Figure S1. H-bond network present in the solid state structure of **4-THF**: (a) the basic unit involving two **4** molecules and one THF molecule; (b) the resulting infinite chain.

(b)

Table S3. Hydrogen bonds for 4-THF [Å and °].

d(D-H)	d(HA)	d(DA)	<(DHA)
0.84	1.90	2.741(13)	178.0
0.84	1.86	2.66(2)	159.2
0.84	1.86	2.61(4)	147.3
	d(D-H) 0.84 0.84 0.84	d(D-H) d(HA) 0.84 1.90 0.84 1.86 0.84 1.86	d(D-H)d(HA)d(DA)0.841.902.741(13)0.841.862.66(2)0.841.862.61(4)

Symmetry transformations used to generate equivalent atoms: #1 -x+3/2,-y+1,z+1/2

Figure S2. H-bond network present in the solid state structure of **5**: (a) the basic unit involving four **5** molecules; (b) and (c) the resulting 2-D network.

(a)

Symmetry transformations used to generate equivalent atoms: #1 x+1/2,-y+1/2,z+1/

Stability studies in DMSO-d₆ and DMSO-d₆:D₂O solutions

Reference data (¹*H NMR*). NMR spectra of the following compounds were recorded in DMSO-d₆ or in DMSO-d₆:D₂O 9:1 *v/v* and used for assignments. **L1**. ¹H NMR (DMSO-d₆): δ /ppm = 7.88 (s, 2H), 3.19 (t, *J* = 11.1 Hz, 2H), 1.72 (s, 4H), 1.61 (s, 6H), 1.46–1.35 (m, 4H), 1.35–1.16 (m, 6H). **L2**. ¹H NMR (DMSO-d₆): δ /ppm = 7.88 (s, 2H), 4.49 (s, 2H), 3.49–3.37 (m, 2H), 3.20–3.08 (m, 2H), 1.90–1.79 (m, 4H), 1.67–1.57 (m, 4H), 1.52–1.40 (m, 4H), 1.31–1.18 (m, 4H). **L3**. ¹H NMR (DMSO-d₆): δ /ppm = 8.44 (s, 2H), 7.31 (d, *J* = 7.9 Hz, 4H), 7.26 (d, *J* = 8.2 Hz, 4H), 2.34 (s, 6H). ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 8.40 (s, 2H), 7.26 (pseudo-q, *J* = 8.6 Hz, 8H), 2.31 (s, 6H). **L4**. ¹H NMR (DMSO-d₆): δ /ppm = 9.79 (s-br, 2H), 8.40 (s, 2H), 7.32 (d, *J* = 8.6 Hz, 4H), 6.82 (d, *J* = 8.6 Hz, 4H). ¹H NMR (DMSO:D₂O 9:1): δ /ppm = 8.37 (s, 2H), 7.30 (d, *J* = 8.7 Hz, 4H), 6.83 (d, *J* = 8.7 Hz, 4H). **dmgH**₂. ¹H NMR (DMSO-d₆): δ /ppm = 11.37 (s, 2H), 1.92 (s, 6H). ¹H NMR (DMSO-d₆:D₂O 9:1): δ /ppm = 1.89 (s, 6H). *p*-HOC₆H₄NH₂. ¹H NMR (DMSO-d₆): δ /ppm = 6.48 (pseudo-q, *J* = 8.7 Hz, 4H). *p*-CH₃C₆H₄NH₂. ¹H NMR (CDCl₃): δ /ppm = 6.95 (d, *J* = 7.8 Hz, 4H), 6.56 (m, 4H), 2.22 (s, 6H).⁴

Reference data (¹⁹⁵*Pt NMR*). NMR data were taken from the literature.

 $[PtCl_4]^{2-}$. ¹⁹⁵Pt{¹H} NMR (D₂O): δ /ppm = -1620.⁵

K[**PtCl₃(DMSO**)]. ¹⁹⁵Pt{¹H} NMR (D₂O): δ /ppm = - 2990.5 ¹⁹⁵Pt{¹H} NMR (DMSO-d₆): δ /ppm = - 2965;⁶ - 2969.3

cis-[PtCl₂(DMSO)₂]. ¹⁹⁵Pt{¹H} NMR (D₂O): δ /ppm = -3442.⁷

trans-[PtCl₂(DMSO)₂]. ¹⁹⁵Pt{¹H} NMR (D₂O): δ /ppm = -3650.3

 $[PtCl(DMSO)_3]^+$. ¹⁹⁵Pt{¹H} NMR (D₂O): $\delta/ppm = -3845.3$

cis-[PtCl₂(DMSO)(OH)]⁻. ¹⁹⁵Pt{¹H} NMR (DMSO-d₆): δ /ppm = -2811.3

Stability studies: compound 1. Yellow solution (0-72 h, DMSO-d₆); yellow solution + orange solid (0-72 h, DMSO-d₆/D₂O/NaCl), the compound is not completely soluble under the selected conditions ($S = 2.6 \cdot 10^{-4}$ M). Data are reported in Table S5, NMR detected species are shown in Chart S4.

¹H NMR (DMSO-d₆): δ/ppm = 8.66 (s + sat., J = 102 Hz, 2H), 4.39 (t, J = 11.2 Hz, 2H), 2.11 (d, J = 10.2 Hz, 4H), 1.80 (d, J = 13.0 Hz, 4H), 1.65 (d, J = 12.7 Hz, 2H), 1.44 (q, J = 11.9 Hz, 4H), 1.31 (q, J = 12.8 Hz, 4H), 1.20-1.08 (m, 2H). ¹H NMR (DMSO-d₆/D₂O 9:1): δ/ppm = 8.63 (s, 2H), 4.33 (t, J = 10.7 Hz, 2H), 2.08 (d, J = 13.6 Hz, 4H), 1.78 (d, J = 13.9 Hz, 4H), 1.62 (d, J = 13.2 Hz, 2H), 1.41 (q, J = 11.5 Hz, 4H), 1.28 (q, J = 13.3 Hz, 4H), 1.17-1.04 (m, 2H).

Chart S4, Table S5. NMR detected species a function of time for DMSO-d₆ or DMSO-d₆/D₂O/NaCl solutions of **1** at 37°C. Data for the DMSO-d₆/D₂O/NaCl solution are given in parentheses.

time		0 ^[a]	72 h
% NMR	1	100 (100)	96 (100)
	L1	0 (0)	4 (0)

[a] NMR spectra were recorded shortly after dissolution (t < 10 min).

Stability studies: compound 2. Yellow solution (0-72 h, DMSO-d₆); yellow solution + orange solid (0-72 h, DMSO-d₆/D₂O/NaCl), the compound is not completely soluble under the selected conditions ($S = 3.9 \cdot 10^{-3}$ M). Data are reported in Table S6, NMR detected species are shown in Chart S5.

2. ¹H NMR (DMSO-d₆): δ/ppm = 8.68 (s + sat., *J* = 102 Hz, 2H), 4.65 (d, *J* = 4.4 Hz, 2H), 4.39 (t, *J* = 10.0 Hz, 2H), 3.47–3.37 (m, 2H), 2.07 (d, *J* = 11.2 Hz, 4H), 1.90 (d, *J* = 10.8 Hz, 4H), 1.56 (q, *J* = 11.6 Hz, 4H), 1.25 (q, *J* = 11.8 Hz, 4H). ¹H NMR (DMSO-d₆/D₂O 9:1): δ/ppm = 8.64 (s + sat., *J* = 89 Hz, 2H), 4.32 (t, *J* = 10.9 Hz, 2H), 3.51–3.36 (m, 2H), 2.05 (d, *J* = 10.2 Hz, 4H), 1.89 (d, *J* = 10.4 Hz, 4H), 1.53 (q, *J* = 12.0 Hz, 4H), 1.22 (q, *J* = 11.0 Hz, 4H).

Chart S5, Table S6. NMR detected species a function of time for DMSO-d₆ or DMSO-d₆/D₂O/NaCl solutions of **2** at 37°C. Data for the DMSO-d₆/D₂O/NaCl solution are given in parentheses.

[a] NMR spectra were recorded shortly after dissolution (t < 10 min).

Stability studies: compound **3**. Red-orange solution (0-72 h, DMSO-d₆); yellow solution + red solid (0-72 h, DMSO-d₆/D₂O/NaCl), the compound is not completely soluble under the selected conditions. Data are reported in Table S7, NMR detected species are shown in Chart S6.

3. ¹H NMR (DMSO-d₆): δ /ppm = 9.09 (s, 2H), 7.41 (d, *J* = 8.0 Hz, 4H), 7.38 (d, *J* = 8.7 Hz, 4H), 2.39 (s, 6H). ¹H NMR (DMSO-d₆/D₂O 9:1): δ /ppm = 8.98 (s, 2H), 7.37 (d, *J* = 6.5 Hz, 4H), 7.29 (d, *J* = 7.8 Hz, 4H), 2.35 (s, 6H). **3A**.⁸ ¹H NMR (DMSO-d₆): δ /ppm = 9.64 (d, *J* = 8.0 Hz, 1H), 8.89 (d, *J* = 7.8 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 2H), 7.63 (br, 3H), 7.49 (d, *J* = 7.9 Hz, 2H), [7.32 (d, *J* = 8.4 Hz, 4H)], [2.40 (s)]. ¹H NMR (DMSO-d₆/D₂O 9:1): δ /ppm = 9.59 (d, *J* = 6.9 Hz, 1H), 8.82 (d, *J* = 7.0 Hz, 1H), 7.83 (d, *J* = 6.7 Hz, 2H), 7.64–7.56 (m, 2H), 7.47–7.43 (m, 2H). **Other compounds**. ¹H NMR (DMSO-d₆; 17-72 h): δ /ppm = 7.48–6.55 (m), 2.38–2.14 (m). ¹H NMR (DMSO-d₆/D₂O 9:1; 72 h): δ /ppm = 9.86, 8.93 (d, *J* = 6.7 Hz), 8.64, 8.18, 8.12, 7.75 (d, *J* = 8.4 Hz), 7.12 (t, *J* = 8.1 Hz), 7.08–6.95 (m), 6.93–6.84 (m), 6.86–6.78 (m), 6.48 (t, *J* = 7.1 Hz), 5.45, 5.31 (d, *J* = 12.0 Hz), 5.11–5.03 (m), 4.79, 4.70, 4.53, 4.44, 2.24, 2.21, 2.18, 2.16, 2.12 (m), 2.10, 2.06. *p*-**CH₃C₆H₄NH₂.** ¹H NMR (DMSO-d₆/D₂O 9:1): δ /ppm = 6.89 (d, *J* = 7.9 Hz, 4H), 6.61 (d, *J* = 8.1 Hz, 4H), 2.13 (s, 6H).

¹⁹⁵Pt{¹H} NMR (DMSO-d₆; 72 h): δ /ppm = - 2951, - 3096, - 3444 (major, *cis*-[PtCl₂(DMSO)₂]). ¹⁹⁵Pt{¹H} NMR (DMSO-d₆/D₂O 9:1; 72 h): δ /ppm = - 2956 (major, [PtCl₃(DMSO)]⁻), - 2997, - 3102, - 3361, -3447 (*cis*-[PtCl₂(DMSO)₂]). **Chart S6, Table S7.** NMR detected species a function of time for DMSO-d₆ or DMSO-d₆/D₂O/NaCl solutions of **3** at 37°C. Data for the DMSO-d₆/D₂O/NaCl solution are given in parentheses.

	time	0 ^[a]	17 h	72 h
	3	55 (74)	0 (< 1)	0 (0)
% NMR	3A	20 (20)	0 (0)	0 (0)
	L3	25 (6)	73 (21)	47 (1)
	p-CH ₃ C ₆ H ₄ NH ₂	0 (0)	0 (4)	0 (20)
	Other compounds ^[b]	0 (0)	27 (75)	53 (79)

[a] NMR spectra were recorded shortly after dissolution (t < 10 min). [b] Based on the integration of CH₃ signals.

Stability studies: compound 4. Red solution (0 h, DMSO-d₆); orange solution (17-72 h, DMSO-d₆); dark red solution (0-72 h, DMSO-d₆/D₂O/NaCl). Data are reported in Table S8, NMR detected species are shown in Chart S7.

4. ¹H NMR (DMSO-d₆): δ /ppm = 10.26–10.07 (m-br, 2H), 8.93 (s, 2H), 7.39 (d, J = 8.4 Hz, 4H), 6.95 (d, J = 8.5 Hz, 4H). ¹H NMR (DMSO-d₆/D₂O 9:1): δ /ppm = 8.86 (s, 2H), 7.37 (d, J = 7.7 Hz, 4H), 6.84 (d, J = 7.1 Hz, 4H). **4A**.8 ¹H NMR (DMSO-d₆): δ /ppm = [10.26–10.07 (m-br)], 9.62 (d, J = 7.2 Hz, 1H), 8.70 (d, J = 7.4 Hz, 1H), 7.88 (d, J = 8.4 Hz, 2H), 7.67 (s-br, 2H), 7.52 (d, J = 8.5 Hz, 2H), 6.93–6.88 (m, 4H). ¹H NMR (DMSO-d₆/D₂O 9:1): δ /ppm = 9.59 (d, J = 6.8 Hz, 1H), 8.65 (d, J = 6.9 Hz, 1H), 7.83 (d, J = 6.6 Hz, 2H), 7.65 (m-br, 2H), 7.50 (d, J = 7.5 Hz, 2H), [6.99–6.89 (m, 4H)]. **Other compounds**. ¹H NMR (DMSO-d₆/D₂O 9:1, 72 h): δ /ppm = 10.01, 9.58, 8.91 (d, J = 6.6 Hz), 8.12, 7.91, 7.82, 7.69–7.60 (m), 7.53–7.42 (m), 7.35 (d, J = 9.1 Hz), 7.18 (d, J = 8.7 Hz), 7.07 (d, J = 8.7 Hz), 6.96–6.91 (m), 6.75–6.64 (m), 5.50, 5.37–5.34 (m), 5.18 (d, J = 19.6 Hz), 4.44. ¹⁹⁵Pt{¹H} NMR (DMSO-d₆, 72 h): δ /ppm = - 3445 (*cis*-[PtCl₂(DMSO)₂]).

¹⁹⁵Pt{¹H} NMR (DMSO-d₆/D₂O 9:1, 72 h): δ /ppm = - 2956 (major, [PtCl₃(DMSO)]⁻), - 2956, - 3001, - 3102, - 3360, - 3447 (*cis*-[PtCl₂(DMSO)₂]).

Chart S7, Table S8. NMR detected species a function of time for DMSO-d₆ or DMSO-d₆/D₂O/NaCl solutions of **4** at 37°C. Data for the DMSO-d₆/D₂O/NaCl solution are given in parentheses.

[a] NMR spectra were recorded shortly after dissolution (t < 10 min). [b] Based on the integration of aromatic CH signals.

Stability studies: compound 5. Pale yellow solution + brown solid (0-72 h, DMSO-d₆ and DMSO- $d_6/D_2O/NaCl$), the compound is not completely soluble under the selected conditions. Data are reported in Table S9, NMR detected species are shown in Chart S8.

5. ¹H NMR (DMSO-d₆): δ/ppm = 2.21 (s, 6H). ¹H NMR (DMSO-d₆/D₂O 9:1): δ/ppm = 2.16 (s, 6H). Other species. ¹H NMR (DMSO-d₆): δ/ppm = 2.16 (s; 17-72 h), 1.78 (s; 0-72 h). ¹H NMR (DMSO-d₆/D₂O 9:1): δ/ppm = 2.22 (s; 72h) 1.94 (s; 0-72 h), 1.77 (s; 0-72 h).

Chart S8, Table S9. NMR detected species a function of time for DMSO-d₆ or DMSO-d₆/D₂O/NaCl solutions of **5** at 37°C. Data for the DMSO-d₆/D₂O/NaCl solution are given in parentheses.

	time	0 ^[a]	17 h	72 h
	5	13 (11)	10	4 (4)
% NMR	dmgH₂	73 (66)	78	87 (88)
	Other species ^[b]	14 (23)	12	9 (8)

[a] NMR spectra were recorded shortly after dissolution (t < 10 min). [b] Based on the integration of CH₃ signals.

Stability studies: compound 6. Pale yellow solution + orange solid (0-72 h, DMSO-d₆ and DMSO-d₆/D₂O/NaCl), the compound is not completely soluble under the selected conditions ($S = 1.5 \cdot 10^{-4}$ M in the DMSO-d₆/D₂O/NaCl solution). Data are reported in Table S10, NMR detected species are shown in Chart S9.

6. ¹H (DMSO-d₆): δ/ppm = 8.79 (s + sat., J = 99 Hz, 2H), 3.90–3.80 (m, 2H), 1.97 (d, J = 11.2 Hz, 4H), 1.83 (d, J = 15.4 Hz, 4H), 1.81–1.71 (m, 4H), 1.66 (d, J = 11.7 Hz, 2H), 1.34 (q, J = 12.5 Hz, 4H), 1.21–1.13 (m, 2H).¹H NMR (DMSO-d₆/D₂O 9:1): δ/ppm = 8.71 (s), 2.00–1.93 (m), 1.75–1.69 (m), 1.09–1.00 (m).

Chart S9, Table S10. NMR detected species a function of time for DMSO-d₆ or DMSO-d₆/D₂O/NaCl solutions of **6** at 37°C. Data for the DMSO-d₆/D₂O/NaCl solution are given in parentheses.

time)	0 ^[a]	20 h	72 h
	6	100 (100)	100 (13)	100 (14)
70 INIVIR	1	0 (0)	0 (87)	0 (86)

[a] NMR spectra were recorded shortly after dissolution (t < 10 min).

Stability studies: $cis-[PtCl_2(\kappa S-DMSO)_2]$. Pale yellow solutions (0-72 h, DMSO-d₆ and DMSO-d₆/D₂O/NaCl). NMR detected species are shown in Chart S10. A single ¹⁹⁵Pt{¹H} NMR signal was observed in the DMSO-d₆ solution, attributed to the starting material cis-[PtCl₂(κ S-DMSO)₂]; no changes were observed after 66 hours at 37 °C. Two ¹⁹⁵Pt{¹H} NMR signals were observed in the DMSO-d₆/D₂O/NaCl solution, due to cis-[PtCl₂(κ S-DMSO)₂] and [PtCl₃(κ S-DMSO)]⁻ (relative integral ca. 1:9); no changes were observed after 88 hours at 37 °C.

cis-[PtCl₂(κ S-DMSO)₂]. ¹⁹⁵Pt{¹H} NMR (DMSO-d₆): δ /ppm = - 3444. ¹⁹⁵Pt{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = - 3445. [PtCl₃(κ S-DMSO)]⁻. ¹⁹⁵Pt{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = - 2956.

Chart S10. NMR detected species for DMSO-d₆ or DMSO-d₆/D₂O/NaCl solutions of *cis*-[PtCl₂(κ S-DMSO)₂] at 37°C.

Chloride/solvent exchange experiment for compound 1

A suspension of **1** (53 mg, 0.11 mmol) and AgOTf (56 mg, 0.22 mmol) in EtOH:H₂O 1:1 v/v (18 mL) was stirred at reflux temperature for 3 hours in the dark. The resulting mixture (orange-yellow solution + colourless solid) was filtered over celite then volatiles were removed from the filtrate solution, affording an ochre yellow-orange solid (yield: 68.5 mg).

This material was analyzed by NMR spectroscopy in DMSO-d₆ and DMSO-d₆/D₂O 9:1 v/v + NaCl (0.11 M), the solutions employed for the stability studies of compounds **1-6**.

*DMSO-d*₆. Yellow solution. Mixture of species; 4 set of signals. ¹H NMR (DMSO-d₆): δ /ppm = 8.73, 8.53, 8.49, 8.43 (s, 2H); 4.38–4.21, 4.18–4.07, 3.74–3.64, 3.64–3.55 (m, 2H); 2.12–1.99 (m, 4H), 1.90–1.76 (m, 4H), 1.71–1.59 (m, 2H), 1.57–1.33 (m, 6H), 1.31–1.10 (m, 4H). ¹⁹F{¹H} NMR (DMSO-d₆): δ /ppm = -77.8 (CF₃SO₃⁻).

*DMSO-d*₆/*D*₂*O*/*NaCl*. Yellow solution + orange solid. ¹H NMR (DMSO-d₆:D₂O 9:1): quantitative formation of **1**. ¹⁹F{¹H} NMR (DMSO-d₆:D₂O 9:1): δ /ppm = -77.8 (CF₃SO₃⁻).

Chart S11. Structure of 7 (numbering refers to C atoms).

In a 25-mL Schlenk tube, NEt₃ (45 µL, 0.32 mmol) and **4** (55 mg, 0.11 mmol) were added to a solution of freshly-prepared aspirin acyl chloride (aspCOCl, 0.31 mmol) in THF (5 mL). The red suspension was stirred at room temperature for 24 hours and then filtered. The resulting orange-brown solid was thoroughly washed with Et₂O, water then dried under vacuum (40 °C). ¹H NMR analysis of this solid revealed a mixture of **7** and **4** (3:1 mol. ratio, CD₃CN). NMR and IR data for **7** are given below. All attempts to isolate the product were unsuccessful. IR (solid state; in admixture with **4**): $\tilde{\nu}/\text{cm}^{-1} = 1768$ w-sh ($\nu_{C=O}$), 1740m ($\nu_{C=O}$), 1732m ($\nu_{C=O}$), 1605s ($\nu_{C=N}$), 1592s ($\nu_{C=N}$), 1564m. ¹H NMR (CD₃CN): δ /ppm = 9.02 (s + satellites, ³*J*_{HPI} = 89 Hz, 2H, C1-H), 8.25 (dd, ³*J*_{HH} = 7.8 Hz, ⁴*J*_{HH} = 1.5 Hz, 2H, C8-H), 7.75 (td, ³*J*_{HH} = 8.0 Hz, ⁴*J*_{HH} = 1.6 Hz, 2H, C10-H), 7.62 (d, ³*J*_{HH} = 8.7 Hz, 4H, C3-H), 7.49 (td, ³*J*_{HH} = 7.7, ⁴*J*_{HH} = 1.1 Hz, 2H, C9-H), 7.37 (d, ³*J*_{HH} = 8.8 Hz, 4H, C4-H), 7.27 (d, ³*J*_{HH} = 7.5 Hz, 2H, C11-H), 2.28 (s, 6H, C14-H).

Figure S3. Solid-state IR spectrum (250-4000 cm⁻¹) of $[PtCl_{2}{\kappa^{2}N-(HCN(C_{6}H_{11}))_{2}}]$, **1**.

Figure S4. Solid-state IR spectrum (250-4000 cm⁻¹) of [PtCl₂{ $\kappa^2 N$ -(HCN(4-C₆H₁₀OH))₂}], **2**.

Figure S5. Solid-state IR spectrum (250-4000 cm⁻¹) of [PtCl₂{ $\kappa^2 N$ -(HCN(4-C₆H₄CH₃))₂}], **3**.

Figure S6. Solid-state IR spectrum (250-4000 cm⁻¹) of $[PtCl_2{\kappa^2N-(HCN(4-C_6H_4OH))_2}]$, **4**.

Figure S7. Solid-state IR spectrum (250-4000 cm⁻¹) of [PtCl₂{ $\kappa^2 N$ -(CH₃CNOH)₂}], 5.

Figure S8. Solid-state IR spectrum (250-4000 cm⁻¹) of $[Pt(\kappa^2 O-C_2 O_4)\{\kappa^2 N-(HCN(C_6H_{11}))_2\}]$, **6**.

Figure S9. Solid-state IR spectrum (250-4000 cm⁻¹) of $[Pt{\kappa^2N,N'-(ONC(CH_3)C(CH_3)NOH)}_2]$, $[Pt(dmgH)_2]$.

Figure S10. Solid-state IR spectra (650-3600 cm⁻¹) of 4·(Me₂CO)_n (red line)and 4 obtained by acetone removal with thermal treatment (green line) or dispersion in CH₂Cl₂ (blue line).

Figure S11. ¹H NMR spectrum (401 MHz, DMSO-d₆) of $[PtCl_{2}{\kappa^{2}N-(HCN(C_{6}H_{11}))_{2}}], 1$.

Figure S13. ¹⁹⁵Pt{¹H} NMR spectrum (86 MHz, DMSO-d₆) of [PtCl₂{κ²N-(HCN(C₆H₁₁))₂], **1**.

Figure S14. ¹H NMR spectrum (401 MHz, DMSO-d₆) of [PtCl₂{κ²N-(HCN(4-C₆H₁₀OH))₂], **2**.

Figure S15. ¹³C{¹H} NMR spectrum (101 MHz, DMSO-d₆) of [PtCl₂{κ²N-(HCN(4-C₆H₁₀OH))₂]], **2**.

Figure S16. ¹⁹⁵Pt{¹H} NMR spectrum (86 MHz, DMSO-d₆) of [PtCl₂{ $\kappa^2 N$ -(HCN(4-C₆H₁₀OH))₂}], 2.

Figure S18. ¹³C{¹H} NMR spectrum (101 MHz, DMF/C₆D₆ capillary) of [PtCl₂{ $\kappa^2 N$ -(HCN(4-C₆H₄CH₃))₂], 3.

Figure 19. ¹⁹⁵Pt{¹H} NMR spectrum (86 MHz, DMF/C₆D₆ capillary) of [PtCl₂{ $\kappa^2 N$ -(HCN(4-C₆H₄CH₃))₂}], 3.

Figure S20. ¹H NMR spectrum (401 MHz, CD₃OD) of [PtCl₂{κ²*N*-(HCN(4-C₆H₄OH))₂}], **4**.

Figure S21. ¹³C{¹H} NMR spectrum (101 MHz, CD₃OD) of [PtCl₂{κ²N-(HCN(4-C₆H₄OH))₂], **4**.

Figure S22. ¹⁹⁵Pt{¹H} NMR spectrum (86 MHz, DMF/C₆D₆ capillary) of [PtCl₂{ $\kappa^2 N$ -(HCN(4-C₆H₄OH))₂}], 4.

Figure S23. ¹H NMR spectrum (401 MHz, acetone-d₆) of [PtCl₂{ $\kappa^2 N$ -(CH₃CNOH)₂}], **5**. Inset shows the OH resonance (lower integral value due to H/D exchange).

Figure S24. ¹³C{¹H} NMR spectrum (101 MHz, acetone-d₆) of [PtCl₂{ $\kappa^2 N$ -(CH₃CNOH)₂}], 5.

Figure S25. ¹⁹⁵Pt{¹H} NMR spectrum (86 MHz, DMF/C₆D₆ capillary) of [PtCl₂{ $\kappa^2 N$ -(CH₃CNOH)₂}], 5.

Figure S26. ¹H NMR spectrum (401 MHz, CD_2Cl_2) of [Pt(κ^2O -C₂O₄){ κ^2N -(HCN(C₆H₁₁))₂]], **6**. Some signals are hidden by the H₂O peak and solvent impurities.

Ο CL CI Ω (td) 7.49 \cap J(1.08, 7.72) (d) (d) 9.02 7.37 J(8.76) J(88.91) (d) 7.27 (d) 7.62 (dd) (s) **8.25** 9.02 J(1.52, 7.83) J(8.74) J(7.52) T (td) 7.75 J(1.57, 8.01) * * 2.0 4 6 4 6 B 0 N 0.4 4 1 N 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 ppm

Figure S27. ¹H NMR spectrum (401 MHz, CD₃CN) in the 6-10 ppm region of [PtCl₂{ $\kappa^2 N$ -(HCN(4-C₆H₄OCO-asp))₂], 7 (in admixture with 4; related signals are marked with asterisk *).

- a) V. Yu. Kukushkin, A. J. L. Pombeiro, C. M. P. Ferreira and L. I. Elding, *Inorg. Synth.* 2002,
 33, 189-196. b) D. Emmerich, K. Vanchanagiri, L. C. Baratto, H. Schmidt and R. Paschke, *Eur. J. Med. Chem.* 2014, 75, 460-466. c) J. H. Price, A. N. Williamson, R. F. Schramm and B. B. Wayland, *Inorg. Chem.* 1972, 11, 1280-1284.
- 2 G. Annibale, L. Cattalini, L. Canovese, G. Michelon, G. Marangoni and M. L. Tobe, *Inorg. Chem.* 1983, 22, 975-978
- 3 S. John, S. Kerrison and, P. J. Sadler, *Inorg. Chim. Acta*, 1985, **104**, 197-201.
- 4 SDBSWeb: http://sdbs.db.aist.go.jp (National Institute of Advanced Industrial Science and Technology, date of access)
- 5 O. Groning, T. Drakenberg and L. I. Elding, *Inorg. Chem.* 1982, **21**, 1820-1824.
- 6 F. D. Rochon, R. Boughzala and R. Melanson, *Can. J. Chem.* 1992, **70**, 2476-2484.
- 7 a) K. Ypsilantis, T. Tsolis, A. Kourtellaris, M. J. Manos, J. C. Plakatouras and A. Garoufis, Dalton Trans. 2017, 46, 1467–1480. b) J. Yoo, J.-H. Kim, Y. S. Sohn and Y. Do, Inorg. Chim. Acta, 1997, 263, 53-60.
- 8 The formation of *trans*-[PtCl₂(κN - α -diimine)(κS -DMSO)] from [PtCl₂($\kappa^2 N$ - α -diimine)] in DMSO-d₆ solution was previously investigated: B. Crociani, F. Di Bianca, R. Bertani and L. Zanotto, *Inorg. Chim. Acta.* 1988, **141**, 253-261.