Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information (ESI) for New Journal of Chemistry.

Electronic Supplementary Information

The Knoevenagel condensation using quinine as organocatalyst under solvent-free condition

Kavita Jain,^a Saikat Chaudhuri,^b Kuntal Pal,^c Kalpataru Das^{*a}

 ^a Department of Chemistry, School of Chemical Sciences and Technology, Dr. Harisingh Gour University, Sagar, Madhya Pradesh – 470 003, India
 ^b Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462 066, India.
 ^c Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata 700 009, India.

^{*}E-mail: kdas@dhsgsu.ac.in

Table of Contents

1.	General Experimental	S-2
2.	General experimental procedure for the optimization of Knoevenagel condensation	S-3
3.	Experimental procedure for the reduction of alkene 4i	S-4
4.	Experimental for the determination of the pK_a values of catalysts (3a-d)	S-4
5.	Experimental for Crystal structure determination of 4a	S-12
6.	Characterization data for products	S-13
7.	X-ray Crystallographic data of 4a	S-21
8.	References	S-24
9.	¹ H and ¹³ C Spectra	S-25
10.	GC-MS Spectra	S-45

1. General experimental

Unless otherwise noted, all reactions were performed at room temperature reactions using ovendried glassware and normal atmosphere. Where appropriate, solvents and all reagents were purified prior to use according to the handbook *Purification of Laboratory Chemicals*.¹ Commercially available reagents were used as received. Quinine (Alfa-Aesar), cinchonine and cinchonidine, N-benzylcinchonidinium bromide (Sigma-Aldrich) were employed as organocatalyst. Thin layer chromatography (TLC) of each reaction was performed using silica gel 60 F₂₅₄ pre-coated plates (Merck). Visualization was accomplished with UV lamp or iodine stain or exposure to KMnO₄ stain. For column chromatography, 230-400 mesh silica gel (Spectrochem, India) was employed for the isolation of pure compounds using the combination of ethyl acetate and hexane as an eluent. ¹H NMR spectra were recorded on Bruker 400 MHz/ JEOL 500 MHz spectrometers and chemical shifts were reported in parts per million (ppm, δ) relative to tetramethyl silane (TMS) at δ 0.00 ppm, and coupling constants (J) were in Hertz (Hz). ¹H NMR splitting patterns are designated as singlet (s), broad singlet (br. s), doublet (d), triplet (t), quartet (q) or multiplet (m). Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded at 100 MHz or 125 MHz and are referenced relative to CDCl₃ at δ 77.16 ppm. The IR spectra were recorded using a FTIR-84005 Shimadzu and were reported in terms of frequency of absorption (cm⁻¹). High resolution ESI and EI mass spectra were recorded on MicrOTOF-O-II and AccuTOF-GCv 4G, respectively.

2. General experimental procedure for the optimization of Knoevenagel condensation

A mixture of ethyl cyanoacetate **1a** (113 mg, 1.0 mmol) and benzaldehyde **2a** (106 mg, 1.0 mmol) were placed into an oven dried 10 mL round bottomed flask equipped with a magnetic stir bar. Then, quinine **3a** (48.6 mg, 0.15 mmol) was added and the reaction mixture was stirred at room temperature under solvent free condition for appropriate time as indicated in Table 1. The crude reaction mixture was directly analyzed by ¹H NMR using phenanthrene as an internal standard and yield of the product **4a** was determined.

Note: Unless otherwise noted all reactions of **Table 1** were performed according to this reaction procedure.

3. Experimental procedure for the reduction of alkene (4i)

An oven dried 10 mL round bottomed flask equipped with a magnetic stir bar was charged with ethyl (*E*)-2-cyano-3-(3,4,5-trimethoxyphenyl)acrylate **4i** (100 mg, 0.343 mmol) in dry acetonitrile. Then sodium borohydride (12.9 mg, 0.343 mmol) was added portionwise at 0-5 °C and resulting reaction mixtures was allow to warm up to room temperature and stirred until the complete consumption of substrate as indicated by TLC. After the reaction was quenched with 10% HCl solution and extracted with ethyl acetate (3 x 10 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and solvent was evaporated under reduced pressure. The crude product was purified by flash column chromatography over silica gel using ethyl acetate in hexane as eluent to afford the pure product **11** in 72% yield (73 mg) as light yellow solid, TLC $R_f = 0.12$ (Hexane: EtOAc = 4:1).

4. Experimental for the determination of the pK_a values of catalysts (3a-d)

An exact 10 mL of 0.01 M solution of each catalyst (**3a-d**) was prepared in anhydrous dimethyl sulfoxide (DMSO) and titrated against 0.01 M solution of trifluoroacetic acid (TFAA) in anhydrous DMSO. During each titration pH of the solution was measured using pH Tutor Bench meter (Eutech Instruments). After the titration, a graph of pH vs volume of TFAA added was plotted in each case (**Fig. 5-8**). A first derivative plot (**Fig. 9-12**) of the original titration curve was obtained to determine the volume of TFAA at the end point, the pH value at the endpoint

and pH at $\frac{1}{2}$ end points. The results are summarized in **Table 4-5**. In this experiment, the pK_b value of the catalyst was determined according to the Henderson-Hasselbalch equation (See eq. 1),² and finally pK_a value was calculated from eq. 4.

$pOH = pK_b + \log \{[Conj Acid/Base]\}$	eq. 1
Since $pH + pOH = 14$	eq. 2
So $pOH = 14 - pH = pK_b$ at half end point	eq. 3
$pK_a + pK_b = 14$	eq. 4

The pK_b of the catalyst (**3a-d**) can be obtained from the experimental pH at half endpoint and subsequently, the pK_a values were obtained and are given in **Table 6**.

Preparation of the 0.01 M CF₃COOH solution

100 mL of stock solution of exact 0.1 M trifluoroacetic acid in anhydrous DMSO was prepared by measuring 765 μ l of trifluoroacetic acid in 100 mL DMSO in a volumetric flask. From this stock solution we prepared 100 mL of 0.01 M solution of trifluoroacetic acid by following the algebraic equation given below:

$$N_1 V_1 = N_2 V_2 \qquad \qquad \text{eq. 5}$$

 N_1 = Concentration of Stock Solution V_1 = Volume of Stock Solution (unknown) N_2 = the new Concentration V_2 = Total volume needed

By algebraic arrangement $V_1 = N_2 V_2 / N_1$ $V_1 = 0.01 \times 100 / 0.1$ $V_1 = 10 \text{ mL}$

So, we taken 10 mL of stock solution of trifluoroacetic acid and diluted it with 90 mL of anhydrous DMSO to get the 100 mL of 0.01 M solution of trifluoroacetic acid.

Preparation of the 0.01 M solution of catalysts (3a-d)

1. An exact 10 mL of 0.01 M solution of quinine (**3a**) was prepared by weighing 32.4 mg of quinine in 10 mL anhydrous DMSO in a volumetric flask.

- An exact 10 mL of 0.01 M solution of cinchonidine (3b) was prepared by weighing 29.4 mg of cinchonidine in 10 mL anhydrous DMSO in a volumetric flask.
- An exact 10 mL of 0.01 M solution of cinchonine (3c) was prepared by weighing 29.4 mg of cinchonine in 10 mL anhydrous DMSO in a volumetric flask.
- An exact 10 mL of 0.01 M solution of *N*-benzylcinchonidinium bromide (3d) was prepared by weighing 46 mg of *N*-benzylcinchonidinium bromide in 10 mL anhydrous DMSO in a volumetric flask.

Figure 5. The titration of 10 mL quinine (**3a**) solution (0.01 M) with 0.01 M solution of trifluoroacetic acid (TFAA) is shown. The pH at the first end point was 8.23. The volume at the first endpoint was determined to be 9.98 mL. The pH at the second end point was 3.70. The volume at the second endpoint was determined to be 42.9 mL.

Figure 6. The titration of 10 mL Cinchonidine (**3b**) solution (0.01 M) with 0.01 M solution of trifluoroacetic acid (TFAA) is shown. The pH at the first end point was 6.1. The volume at the first endpoint was determined to be 9.9 mL. The pH at the second end point was 2.83. The volume at the second endpoint was determined to be 21.0 mL.

Figure 7. The titration of 10 mL Cinchonine (**3c**) solution (0.01 M) with 0.01 M solution of trifluoroacetic acid (TFAA) is shown. The pH at the first end point was 8.51. The volume at the first endpoint was determined to be 7.86 mL. The pH at the second end point was 2.48. The volume at the second endpoint was determined to be 28.9 mL.

Figure 8. The titration of 10 mL *N*-benzylcinchonidinium bromide (**3d**) solution (0.01 M) with 0.01 M solution of trifluoroacetic acid is shown. The pH at the first end point was 4.08. The volume at the first endpoint was determined to be 0.3 mL.

Figure 9. First Derivative plot for quinine (3a)

Figure 11. First Derivative plot for cinchonine (3c)

Figure 12. First Derivative plot for *N*-benzylcinchonidinium bromide (3d)

Figure 13. The titrations of 10.0 mls of 0.01 M solution of quinine, cinchonine, cinchonidine and *N*-benzylcinchonidinium bromide with 0.01 M trifluoroacetic acid (TFAA) solution are shown. The pH at the first endpoint for each titration was 8.23, 8.51, 6.1 and 4.08, respectively. The volume of TFAA at the first endpoint for the titration of quinine was 9.98 mL, for the titration with cinchonine was 7.86 mL, for the titration with cinchonidine was 9.9 mL and 0.3 mL for the titrations with *N*-benzylcinchonidinium bromide. The pH at the second endpoint was 3.70, 2.48, 2.83 for quinine, cinchonine, cinchonidine, respectively.

Table 4: Summary of the experimental pH at End Point (EP) of 0.01 M solution of quinine (**3a**), cinchonidine (**3b**), cinchonine (**3c**) and *N*-benzylcinchonidinium bromide (**3d**) titrated with 0.01 M trifluoroacetic acid (TFAA) solution.

S. No.	Base	Volume at first EP (ml)	pH at first EP	Volume at second EP (ml)	pH at second EP
1.	Quinine (3a)	9.98	8.23	42.9	3.70
2.	Cinchonidine (3b)	9.9	6.1	21.0	2.83
3.	Cinchonine (3c)	7.86	8.51	28.9	2.48
4.	N-benzylcinchonidinium	0.3	4.08	_	—
	bromide (3d)				

Note: The pH of the end point of each base was calculated from the minima of the first derivative plot (**Figure 9-12**.) of the original graph (**Figure 5-8**).

Table 5: Summary of the experimental pH at half endpoint of quinine, cinchonidine, cinchonine and *N*-benzylcinchonidinium bromide.

S. No.	Base	pH at1/2 endpoint Experimental		
		first EP	second EP	
1.	Quinine (3a)	9.67	4.91	
2.	Cinchonidine (3b)	8.19	5.0	
3.	Cinchonine (3c)	8.54	4.26	
4.	N-benzylcinchonidinium	4.58	_	
	bromide (3d)			

Note: The pH of the half end point of each base was calculated from the half of the minima of the first derivative plot (**Figure 9-12**.) of the original graph (**Figure 5-8**).

S. No.	Base	pH at1/2 endpoint Experimental first EP	pK _b Experimental	pK _a Experimental
1.	Quinine (3a)	9.67	4.33*	9.67*
2.	Cinchonidine (3b)	8.19	5.81*	8.19*
3.	Cinchonine (3c)	8.54	5.46*	8.54*
4.	N-benzylcinchonidinium	4.58	9.42	4.58
	bromide (3d)			

Table 6: Summary of the experimental pK_b and pK_a value of quinine, cinchonidine, cinchonine, and *N*-benzylcinchonidinium bromide.

*Note: pK_{a1} and pK_{b1} values of the corresponding bases are shown.

5. Experimental for Crystal structure determination of 4a

A single crystal of $C_{12}H_{11}NO_2$ (**4a**) was glued to a glass fiber and mounted on a Bruker'**Bruker APEX-II CCD'** diffractometer and data were collected using graphite-mono-chromated Mo-Karadiation ($\lambda = 0.71069$ Å) at low temperature (100 K). An empirical absorption correction was applied using the SADABS program. Cell constants were obtained from the least-squares refinement of three-dimensional centroids by recording narrow ω rotation frames until completion of almost all reciprocal space in the stated θ range. The data were integrated with the Bruker SAINT program. The space group of this compound was determined based on the lack of systematic absences and intensity statistics. The structure was solved using SIR97³ and refined using SHELXL-97⁴. Full-matrix least-squares/difference Fourier cycles were performed to locate the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. The crystal structure was produced with ORTEP.⁵ Selected crystallographic data parameters for **4a** are listed in Table 7-12.

6. Characterization data for products (Table 2 and 3)

ethyl (E)-2-cyano-3-(4-fluorophenyl)acrylate (4b)

White solid, yield: 87 %; IR v_{max} (KBr, cm⁻¹): 2997, 2226, 1718, 1598, 1512, 1272, 1165, 840, 763, 509; ¹H NMR (500 MHz, CDCl₃)⁶: δ 8.21 (s, 1H), 8.05-8.02 (m, 2H), 7.22-7.18 (m, 2H), 4.39 (q, *J* = 10.0 Hz, 2H), 1.40 (t, *J* = 10.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 165.5 (d, *J* = 256.0 Hz), 162.5, 153.6, 133.7 (d, *J* = 9.0 Hz), 127.9 (d, *J* = 4.0 Hz), 116.8 (d, *J* = 21.0 Hz), 115.6, 102.7, 62.9, 14.3; ¹⁹F NMR (470 MHz, CDCl₃): δ -103.9 to -104.0 (m, 1F); HRMS (EI+): m/z calcd for C₁₂H₁₀FNO₂ (M⁺): 219.0696; found: 219.0694.

ethyl (E)-3-(4-chlorophenyl)-2-cyanoacrylate (4c)

White solid, yield: 84 %; IR v_{max} (KBr, cm⁻¹): 2990, 2224, 1724, 1611, 1589, 1264, 832, 738, 499; ¹H NMR (500 MHz, CDCl₃)⁷: δ 8.20 (s, 1H), 7.94 (d, *J* = 10.0 Hz, 2H), 7.48 (d, *J* = 10.0 Hz, 2H), 4.39 (q, *J* = 10.0 Hz, 2H), 1.40 (t, *J* = 10.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 162.4, 153.5, 139.7, 132.3, 130.0, 129.8, 115.4, 103.6, 63.0, 14.3; HRMS (ESI+): m/z calcd for C₁₂H₁₀ClNO₂Na (M+Na): 258.0298; found : 258.0292.

ethyl (E)-3-(3-bromophenyl)-2-cyanoacrylate (4d)

Yellowish solid, yield: 80 %; IR v_{max} (KBr, cm⁻¹): 2981, 2223, 1715, 1606, 1273, 1202, 794, 681; ¹H NMR (500 MHz, CDCl₃): δ 8.17 (s, 1H), 8.04 (s, 1H), 7.99 (d, *J* = 10.0 Hz, 1H), 7.68 (d, *J* = 5.0 Hz, 1H), 7.39 (t, *J* = 10.0 Hz, 1H), 4.40 (q, *J* = 10.0 Hz, 2H), 1.41 (t, *J* = 10.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 162.1, 153.2, 136.1, 133.9, 133.4, 130.9, 129.0, 123.4, 115.0, 104.8, 63.1, 14.3; HRMS (ESI+): m/z calcd for C₁₂H₁₀BrNO₂Na (M+Na): 301.9793 ; found : 301.9789.

ethyl (E)-2-cyano-3-(4-nitrophenyl)acrylate (4f)

Yellow solid, yield: 87 %; IR v_{max} (KBr, cm⁻¹): 2924, 2226, 1720, 1515, 1347, 1286, 858, 765, 666; ¹H NMR (500 MHz, CDCl₃)⁷: δ 8.35 (d, *J* = 10.0 Hz, 2H), 8.30 (s, 1H), 8.13 (d, , *J* = 10.0 Hz, 2H), 4.43 (q, *J* = 5.0 Hz, 2H), 1.42 (t, *J* = 5.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 161.5, 151.8, 149.9, 137.0, 131.6, 124.5, 114.6, 107.5, 63.5, 14.2; HRMS (EI+): m/z calcd for C₁₂H₁₀N₂O₄ (M⁺): 246.0641; found : 246.0565.

ethyl (E)-2-cyano-3-(4-methoxyphenyl)acrylate (4g)

Yellowish solid, yield: 88%; IR v_{max} (KBr, cm⁻¹): 2993, 2216, 1720, 1587, 1563, 1433, 1264, 1187, 1021, 838, 555; ¹H NMR (500 MHz, CDCl₃)⁶: δ 8.17 (s, 1H), 8.0 (d, *J* = 5.0 Hz, 2H), 6.99 (d, *J* = 5.0 Hz, 2H), 4.37 (q, *J* = 10.0 Hz, 2H), 3.89 (s, 3H), 1.39 (t, *J* = 10.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 163.9, 163.2, 154.5, 133.7, 124.5, 116.3, 114.9, 99.5, 62.5, 55.7, 14.3; HRMS (EI+): m/z calcd for C₁₃H₁₃NO₃ (M⁺): 231.0895; found : 231.0900.

ethyl (E)-2-cyano-3-(p-tolyl)acrylate (4h)

White solid, yield: 86 %; IR v_{max} (KBr, cm⁻¹): 2995, 2218, 1724, 1600, 1269, 1208, 1192, 1094, 818, 762; ¹H NMR (500 MHz, CDCl₃)⁶: δ 8.22 (s, 1H), 7.90 (d, *J* = 5.0 Hz, 2H), 7.31 (d, *J* = 5.0 Hz, 2H), 4.38 (q, *J* = 10.0 Hz, 2H), 2.44 (s, 3H), 1.40 (t, *J* = 10.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 162.9, 155.1, 144.8, 131.4, 130.1, 129.0, 115.9, 101.0, 62.7, 22.0, 14.3; HRMS (ESI+): m/z calcd for C₁₃H₁₃NNaO₂ (M+Na): 238.0844; found : 238.0838.

2-benzylidenemalononitrile (4j)

White solid, yield: 89 %; IR v_{max} (KBr, cm⁻¹): 2223, 1593, 1450, 957, 755, 678, 616; ¹H NMR (500 MHz, CDCl₃)⁸: 7.91(d, J = 10.0 Hz, 2H), 7.79 (s, 1H), 7.65-7.62 (m, 1H), 7.56-7.53 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 160.1, 134.8, 131.0, 130.8, 129.7, 113.8, 112.6, 83.0 HRMS: (ESI-): m/z calcd for C₁₀H₅N₂ (M-H): 153.0531; found: 153.0451.

2-(4-fluorobenzylidene)malononitrile (4k)

White solid, yield: 87 %; IR v_{max} (KBr, cm⁻¹): 2232,1597, 1507, 1417, 1245, 1166, 840; ¹H NMR (400 MHz, CDCl₃): 7.98-7.95 (m, 2H), 7.74 (s, 1H), 7.24-7.22 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 166.2 (d, *J* = 259.0 Hz), 158.4, 133.5 (d, *J* = 9.0 Hz), 127.5(d, *J* = 3.0 Hz), 117.3 (d, *J* = 22.0 Hz), 113.7, 112.6, 82.6 (d, *J* = 3.0 Hz); HRMS (EI+): m/z calcd for C₁₀H₅FN₂ (M⁺): 172.0435; found: 172.0377.

2-(4-nitrobenzylidene)malononitrile (4m)

Deep yellow solid, yield: 76 %; IR v_{max} (KBr, cm⁻¹): 2232, 1521, 1345, 935, 851; ¹H NMR (500 MHz, CDCl₃)⁸: 8.39 (d, *J* = 10.0 Hz, 2H), 8.07 (d, *J* = 10.0 Hz, 2H), 7.89 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): 157.0, 150.5, 135.9, 131.4, 124.7, 112.7, 111.7, 87.7 ; HRMS (EI+): m/z calcd for C₁₀H₅N₃O₂ (M⁺): 199.0382; found : 198.9823.

2-(4-methoxybenzylidene)malononitrile (4n)

Yellow solid, yield: 72 %; IR v_{max} (KBr, cm⁻¹): 2224, 1604, 1571, 1320, 1279, 1186, 1022, 834; ¹H NMR (500 MHz, CDCl₃)⁸: 7.91 (d, *J* = 10.0 Hz, 2H), 7.65 (s, 1H), 7.02 (d, *J* = 10.0 Hz, 2H), 3.92 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 164.9, 159.0, 133.6, 124.2, 115.3, 114.6, 113.5, 78.7, 55.9; HRMS (EI+): m/z calcd for C₁₁H₈N₂O (M⁺): 184.0637; found: 184.0687.

2-(4-methylbenzylidene)malononitrile (40)

Yellow solid, yield: 77 %; IR v_{max} (KBr, cm⁻¹): 2361, 2225, 1589, 1222, 1193, 841; ¹H NMR (400 MHz, CDCl₃): 7.81 (d, J = 8.0 Hz, 2H), 7.72 (s, 1H), 7.34 (d, J = 8.0 Hz, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 159.9, 146.5, 131.0, 130.5, 128.6, 114.1, 113.0, 81.4, 22.1.

Ethyl (2*E*,4*E*)-2-cyano-5-phenylpenta-2,4-dienoate (4s)

Yellow solid, yield: 85 %; ¹H NMR (500 MHz, CDCl₃)⁷: 8.05-7.98 (m, 1H), 7.61-7.58 (m, 2H), 7.45-7.42 (m, 3H), 7.33.7.27 (m, 2H) 4.35 (q, J = 10.0 Hz, 2H), 1.39 (t, J = 10.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): 162.4, 155.5, 148.9, 134.8, 131.3, 129.3, 128.6, 123.2, 114.7, 104.7, 62.5 14.3; HRMS (ESI+): m/z calcd for C₁₄H₁₃NO₂ (M⁺): 227.0946; found: 227.1743.

Ethyl (E)-2-cyano-3-(1H-pyrrol-2-yl)acrylate (4t)

Light yellow solid, yield: 81 %; ¹H NMR (500 MHz, $CDCl_3$)⁷: 9.91 (br. s, 1H), 8.01 (s, 1H), 7.23 (s, 1H), 6.94 (s, 1H), 6.43-6.42 (m, 1H), 4.33 (q, *J* = 10.0 Hz, 2H), 1.37 (t, *J* = 10.0 Hz, 3H); ¹³C NMR (125 MHz, $CDCl_3$)⁵: 163.5, 142.6, 128.5, 126.9, 124.6, 118.7, 112.5, 92.0, 62.2, 14.4; HRMS (EI+): m/z calcd for $C_{10}H_{10}N_2O_2$ (M⁺): 190.0742; found : 190.0617.

Ethyl (*E*)-2-cyano-3-(1H-indol-3-yl)acrylate (4u)

Yellow solid, yield: 85%; ¹H NMR (500 MHz, $CDCl_3$)⁷: 9.4 (br. s, 1H), 8.65 (d, J = 5.0 Hz, 1H), 8.63 (s, 1H) 7.83-7.82 (m, 1H), 7.51-7.49 (m, 1H), 7.35-7.30 (m, 2H), 4.39 (q, J = 10.0 Hz, 2H), 1.41 (t, J = 10.0 Hz, 3H); ¹³C NMR (125 MHz, $CDCl_3$)⁵: 164.0, 146.8, 135.8, 130.9, 127.5, 124.3, 122.8, 118.4, 118.3, 112.4, 111.3, 94.9, 62.2, 14.5; HRMS (EI+): m/z calcd for $C_{14}H_{12}N_2O_2$ (M⁺): 240.0899; found : 240.0776.

2-(1-phenylethylidene)malononitrile (4v)

White solid, yield: 70 %; IR v_{max} (KBr, cm⁻¹): 2357, 2228, 1566, 770; ¹H NMR (500 MHz, CDCl₃)⁸: 7.57-7.49 (m, 5H), 2.64 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): 175.6, 136.0, 132.4, 129.3, 127.5, 112.9, 112.8, 84.9, 24.4; HRMS (EI+) m/z calcd for C₁₁H₈N₂ (M⁺) : 168.0687; found : 168.0028.

2-(diphenylmethylene)malononitrile (4w)

White solid, yield: 71 %; IR v_{max} (KBr, cm⁻¹): 2361, 2223, 1531, 702 ; ¹H NMR (500 MHz, CDCl₃): 7.60-7.57 (m, 2H), 7.50-7.47 (m, 4H), 7.45-7.43 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): 175.1, 136.2, 132.8, 130.5, 129.0, 114.0, 81.9; HRMS (EI⁺): m/z calcd for C₁₆H₁₀N₂ (M⁺) 230.0844; found: 230.0923.

Ethyl 2-imino-2H-chromene-3-carboxylate (5)

Light yellow solid, yield: 90 %; IR v_{max} (KBr, cm⁻¹): 3064, 2979, 1776, 1507, 1565, 1451, 1374, 1209, 1033, 775; ¹H NMR (500 MHz, CDCl₃): δ 8.53 (s, 1H), 7.65-7.61 (m, 2H), 7.37-7.32 (m, 2H), 4.43 (q, *J* = 10.0 Hz, 2H), 1.42 (t, *J* = 10.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 163.2, 156.8, 155.3, 148.7, 134.4, 129.6, 124.9, 118.5, 118.0, 116.9, 62.1, 14.3; HRMS (ESI+): m/z calcd for C₁₂H₁₂NNaO₃ (M+Na): 241.0715 ; found : 241.0503.

Ethyl 2-cyano-3-(3,4,5-trimethoxyphenyl)propanoate (11)

Light yellow solid, yield: 72%; IR v_{max} (KBr, cm⁻¹): 2251, 1740, 1591, 1465, 1345, 1250, 1127, 843; ¹H NMR (400 MHz, CDCl₃): 6.50 (s, 2H), 4.26 (q, *J* = 8.0 Hz, 2H), 3.86 (s, 6H), 3.83(s, 3H), 3.72-3.70 (m, 1H), 3.24-3.11 (m, 2H), 1.40 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): 165.6, 153.5, 137.7, 131.0, 116.4, 106.2, 63.1, 60.9, 56.3, 39.9, 36.3, 14.0; HRMS (EI+): m/z calcd for C₁₅H₁₉NO₅ (M⁺): 293.1263; found : 293.1203.

Table 7 Crystal data and structure refinement for 4a.					
Identification code	KJ_5KN_0m_a				
Empirical formula	$C_{12}H_{11}NO_2$				
Formula weight	201.22				
Temperature/K	100				
Crystal system	triclinic				
Space group	P-1				
a/Å	7.4403(5)				
b/Å	7.5372(5)				
c/Å	10.8823(7)				
α/°	100.819(2)				
β/°	96.705(2)				
γ/°	113.4590(10)				
Volume/Å ³	537.32(6)				
Z	2				
$\rho_{calc}g/cm^3$	1.2437				
µ/mm ⁻¹	0.085				
F(000)	212.1				
Crystal size/mm ³	$0.2 \times 0.1 \times 0.08$				
Radiation	Mo K α ($\lambda = 0.71073$)				
20 range for data collection/°	6.1 to 56.7				
Index ranges	$-9 \le h \le 9, -10 \le k \le 10, -14 \le l \le 14$				
Reflections collected	16679				
Independent reflections	2669 [$R_{int} = 0.0610, R_{sigma} = 0.0356$]				
Data/restraints/parameters	2669/0/138				
Goodness-of-fit on F ²	1.103				
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0635, wR_2 = 0.1668$				
Final R indexes [all data]	$R_1 = 0.0970, wR_2 = 0.2003$				
Largest diff. peak/hole / e Å ⁻³	0.45/-0.32				

7. X-ray Crystallographic data of 4a [CCDC 1854216]

Table 8 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for 4a. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

- 1 J				
Atom	x	у	Z	U(eq)
O(1)	2030(3)	938(2)	6494.2(17)	79.0(6)
O(2)	3966(3)	3506(2)	8164.6(16)	73.5(5)
N(1)	5341(4)	7888(3)	7517(2)	89.0(8)
C(1)	698(4)	3790(4)	2962(2)	67.4(6)
C(2)	472(5)	4765(5)	2046(2)	82.3(8)
C(3)	1374(4)	6812(5)	2338(3)	77.7(8)

C(4)	2440(4)	7888(4)	3542(3)	77.9(8)
C(5)	2675(3)	6925(3)	4465(2)	66.3(6)
C(6)	1831(3)	4849(3)	4183.5(19)	49.8(5)
C(7)	2002(3)	3688(3)	5079(2)	50.4(5)
C(8)	3054(3)	4253(3)	6276(2)	49.2(5)
C(9)	4314(3)	6279(3)	6964(2)	58.5(6)
C(10)	2940(3)	2696(3)	6967(2)	56.9(5)
C(11)	4066(5)	2130(4)	8935(3)	83.5(8)
C(12)	2322(5)	1543(5)	9502(3)	97.7(10)

Table 9 Anisotropic Displacement Parameters ($\text{\AA}^2 \times 10^3$) for 4a. The Anisotropic displacement factor exponent takes the form: $_2\pi^2[\text{Ih}^2a^{*2}\text{II}_{**}+2\text{Ih}a^{*}b^{*1}\text{I}_{**}+1]$							
Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	$\frac{U_{12}}{U_{13}}$	U ₂₃	
O(1)	103.5(13)	37.9(8)	77.2(11)	18.0(8)	-1.1(9)	13.7(7)	
O(2)	91.6(12)	46.3(8)	68.0(10)	20.0(8)	-5.1(9)	17.5(7)	
N(1)	113.3(18)	42.6(11)	79.7(14)	13.4(11)	-14.7(13)	12.3(10)	
C(1)	83.0(16)	60.9(14)	59.0(13)	34.4(12)	13.6(11)	9.9(11)	
C(2)	102(2)	102(2)	54.4(14)	55.3(18)	15.4(13)	19.9(14)	
C(3)	80.3(17)	99(2)	80.3(18)	47.8(16)	32.9(14)	51.0(16)	
C(4)	66.5(15)	66.4(15)	103(2)	19.8(12)	16.2(14)	47.0(15)	
C(5)	57.2(13)	50.9(12)	77.4(15)	9.8(10)	2.7(11)	24.0(11)	
C(6)	46.0(10)	48.5(10)	57.4(11)	20.4(8)	16.3(9)	16.2(9)	
C(7)	50.4(10)	37.7(9)	60.4(12)	16.6(8)	14.0(9)	10.8(8)	
C(8)	50.2(10)	36.8(9)	60.1(12)	17.5(8)	13.1(9)	13.4(8)	
C(9)	67.5(13)	40.9(10)	61.2(12)	18.7(10)	5.0(10)	15.6(9)	
C(10)	62.1(12)	40.1(10)	63.6(13)	18.4(9)	7.6(10)	13.6(9)	
C(11)	95.4(19)	66.5(16)	78.1(17)	25.7(14)	4.9(15)	23.8(13)	
C(12)	113(2)	101(2)	77.9(19)	47(2)	14.7(17)	21.0(17)	

Table 10 Bond Lengths for 4a.							
Atom	Atom	Length/Å	Atom	Atom	Length/Å		
O(1)	C(10)	1.195(2)	C(4)	C(5)	1.379(3)		
O(2)	C(10)	1.324(3)	C(5)	C(6)	1.389(3)		
O(2)	C(11)	1.469(3)	C(6)	C(7)	1.453(3)		
N(1)	C(9)	1.139(3)	C(7)	C(8)	1.334(3)		
C(1)	C(2)	1.378(4)	C(8)	C(9)	1.428(3)		
C(1)	C(6)	1.385(3)	C(8)	C(10)	1.489(3)		
C(2)	C(3)	1.369(4)	C(11)	C(12)	1.447(4)		
C(3)	C(4)	1.359(4)					

Table 11 Bond Angles for 4a.							
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(11)	O(2)	C(10)	117.07(18)	C(8)	C(7)	C(6)	131.14(18)
C(6)	C(1)	C(2)	121.0(2)	C(9)	C(8)	C(7)	124.54(18)
C(3)	C(2)	C(1)	119.9(2)	C(10)	C(8)	C(7)	119.07(17)
C(4)	C(3)	C(2)	120.2(2)	C(10)	C(8)	C(9)	116.39(18)
C(5)	C(4)	C(3)	120.3(2)	C(8)	C(9)	N(1)	179.0(3)
C(6)	C(5)	C(4)	120.7(2)	O(2)	C(10)	O(1)	124.6(2)
C(5)	C(6)	C(1)	117.8(2)	C(8)	C(10)	O(1)	123.9(2)
C(7)	C(6)	C(1)	116.98(19)	C(8)	C(10)	O(2)	111.52(17)
C(7)	C(6)	C(5)	125.19(19)	C(12)	C(11)	O(2)	108.3(3)

Table 12Hydrogen Atom Coordinates ($\mathring{A} \times 10^4$) and Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for 4a.

Atom	x	у	Z.	U(eq)			
H(1)	80(4)	2399(4)	2758(2)	80.9(8)			
H(2)	-292(5)	4034(5)	1230(2)	98.8(10)			
H(3)	1257(4)	7469(5)	1712(3)	93.2(9)			
H(4)	3014(4)	9278(4)	3743(3)	93.5(9)			
H(5)	3405(3)	7674(3)	5286(2)	79.6(7)			
H(7)	1248(3)	2313(3)	4762(2)	60.4(6)			
H(11a)	4088(5)	959(4)	8398(3)	100.2(10)			
H(11b)	5279(5)	2786(4)	9601(3)	100.2(10)			
H(12a)	2306(19)	2711(6)	10026(18)	146.6(15)			
H(12b)	1130(5)	870(30)	8837(3)	146.6(15)			
H(12c)	2372(18)	660(30)	10020(18)	146.6(15)			

8. References

- 1. W. L. F. Armarego, D. D. Perrin, *Purification of Laboratory Chemicals;* 4th Edition, Butterworth Heinemann, 1997.
- 2. R. P. D'Amelia, S. Chiang, S. Pollut, W. F. Nirode, J. Chem. Educ., 2014, 91, 1070.
- A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C.Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R.Spagna, *J. Appl. Crystallogr*. 1999, **32**, 115.
- 4. G. M. Sheldrick, SHELX97: A Program for Crystal StructureAnalysis (release 97-2), University of Göttingen, Germany, 1997.
- 5. L. J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565.
- 6. F. Pandolfi, M. Feroci, I. Chiarotto, *ChemistrySelect* 2018, 3, 4745.
- J. S. Yadav, B. V. S. Reddy, A. K. Basak, B. Visali, A. V. Narsaiah and K. Nagaiah, *Eur. J. Org. Chem.*, 2004, 546.
- 8. G. R. Krishnan, K. Sreekumar, Eur. J. Org. Chem. 2008, 4763.

Figure 14: ¹H NMR spectrum of 4a (CDCl₃, 500 MHz)

Figure 15: ¹³C NMR spectrum of 4a (CDCl₃, 125 MHz)

Figure 16: ¹H NMR spectrum of 4b (CDCl₃, 500 MHz)

Figure 17. ¹³C NMR spectrum of 4b (CDCl₃, 125 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure 19: ¹³C NMR spectrum of 4c (CDCl₃, 125 MHz)

-0.0

90 80 f1 (ppm)

Figure 21: ¹³C NMR spectrum of 4d (CDCl₃, 125 MHz)

Figure 22: ¹HNMR spectrum of 4f (CDCl₃, 500 MHz)

Figure 23: ¹³C NMR spectrum of 4f (CDCl₃, 125 MHz)

Figure 24: ¹H NMR spectrum of 4g (CDCl₃, 500 MHz)

Figure 25: ¹³C NMR spectrum of 4g (CDCl₃, 125MHz)

Figure 26: ¹H NMR spectrum of 4h (CDCl₃, 400 MHz)

Figure 27: ¹³C NMR spectrum of 4h (CDCl₃, 100 MHz)

Figure 28: ¹H NMR spectrum of 4j (CDCl₃, 500 MHz)

Figure 29: ¹³C NMR spectrum of 4j (CDCl₃, 125 MHz)

Figure 30: ¹H NMR spectrum of 4k (CDCl₃, 400 MHz)

Figure 31: ¹³C NMR spectrum of 4k (CDCl₃, 100 MHz)

Figure 32: ¹H NMR spectrum of 4m (CDCl₃, 500 MHz)

Figure 33: ¹³C NMR spectrum of 4m (CDCl₃, 125 MHz)

Figure 35: ¹³C NMR spectrum of 4n (CDCl₃, 125 MHz)

Figure 36: ¹H NMR spectrum of 4o (CDCl₃, 400 MHz)

Figure 37: ¹³C NMR spectrum of 4o (CDCl₃, 100 MHz)

Figure 39: ¹³C NMR spectrum of 4s (CDCl₃, 125 MHz)

Figure 40: ¹H NMR spectrum of 4t (CDCl₃, 500 MHz)

Figure 41: ¹³C NMR spectrum of 4t (CDCl₃, 125 MHz)

Figure 42: ¹H NMR spectrum of 4u (CDCl₃, 500 MHz)

Figure 43: ¹³CNMR spectrum of 4u (CDCl₃, 125 MHz)

Figure 45: ¹³C NMR spectrum of 4v (CDCl₃, 125 MHz)

Figure 46: ¹H NMR spectrum of 4w (CDCl₃, 500 MHz)

Figure 47: ¹³C NMR spectrum of 4w (CDCl₃, 125 MHz)

Figure 49: ¹³C NMR spectrum of 5 (CDCl₃, 125 MHz)

Figure 50: DEPT-135 spectrum of 5 (CDCl₃, 125 MHz)

Figure 51: ¹H NMR spectrum of 11 (CDCl₃, 400 MHz)

Figure 52: ¹³C NMR spectrum of **11** (CDCl₃, 100 MHz)

10. GC-MS Spectra

Figure 53. GC-MS spectrum of pure quinine 3a

