Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Hydrous Nickel Sulphide Nanoparticles Decorated 3D Graphene Foam

Electrodes for Enhanced Supercapacitive Performance of Asymmetric Device

Umakant M. Patil¹*, Pranav K. Katkar¹, Supriya J. Marje¹, Chandrakant D. Lokhande¹,

Seong C. Jun²*

¹Centre for Interdisciplinary Research, D. Y. Patil University, Kasaba Bawada, Kolhapur-416 006, (India).

²Nano-Electro Mechanical Device Laboratory, School of Mechanical Engineering,

Yonsei University, Seoul 120-749, (South Korea).

Fig (S1): Cyclic voltammetry (CV) of Ni_9S_8 nanoparticles on stainless steel (SS) at various scan rates (5 to 200 mVs⁻¹)

Fig (S2): cyclic voltammetry of activated carbon (AC) on nickel foam (NF) at various scan rates (5 to 200 mVs⁻¹)

Sr.	Material and	Method for	Capacita	Energy	Power	Cycles	Stability	Ref.
No.	Nano-structure	deposition	nce	density	density			
		-	¤t		-		(%)	
			density					
1.	NiS	Hydrothermal	1122.7	31 Wh	0.9 kW	1000	97.8	1
	(Microflowers)		Fg ⁻¹ at 1	Kg ⁻¹	kg ⁻¹			
			Ag ⁻¹					
2.	NiS	Heating	2112 Fg ⁻¹			4000	91.8	2
	(Nanoframes)	treatment	at 1 Ag ⁻¹					
3.	NiS/CR's	Solvothermal	1092 Fg ⁻¹			2000	100	3
	(Nanoparticles)		at 1 Ag ⁻¹					
4.	NiS/GO	Hydrothermal	800 Fg ⁻¹	111.1	499.5 W	1000		4
	(Nanoparticles)		at 1 Ag ⁻¹	Wh Kg ⁻¹	kg-1			
5.	rGO/Ni ₃ S ₂	Spray	1424 Fg ⁻¹			3000	67.5	5
	(Nanoparticles)	technique	at 0.75					
			Ag-1					
6.	NIS/GNS/	Hydrothermal	2377 Fg ⁻¹	14 Wh	16 kWh	1000	32	6
	CNT (Nanotubes)		at 2 mVs^{-1}	kg ⁻¹	kg ⁻¹	= 0.0	0.6	-
7.	NIS/rGO	hydrothermal	1312 Fg ⁻¹	17.01	2285.36	500	86	
	(Nanoflakes)	CDD	at 5 mVs^{-1}	Wh kg ⁻¹	W kg ⁻¹	2000	0.5.0	
8.	NIS	CBD	750 Fg ⁻¹	28 Wh	4.98 kW	3000	85.3	8
	(Nanoflames)	1 1 1 1	at 5 mVs ⁻¹	kg ⁻¹	kg ⁻¹	1000		0
9.	NiS/G	hydrothermal	187.53			1000		9
	(Nanoflakes)		Fg^{-1} at 10					
10	N.C		mVs^{-1}			1000	01.6	10
10.	NIS (Non-consticutors)	Microwave	845 Fg ⁻¹			1000	81.0	10
	(Nanoparticles)	assisted	at I Ag '					
11	NiS/rCO	Hydrothermal	852 Eg-1			1000	87	11
11.	(Nanonarticles)	Tryutotiterinai	352 Fg^{-1}			1000	02	11
12	Ni.S.	Potentio-	664 Fg ⁻¹			1000	01	12
12.	(Nanoflakes)	dynamic	at $4 \Delta \sigma^{-1}$			1000		12
	(Ivanonakes)	deposition	at + Mg					
13	NiS/rGO	Hydrothermal	1169 Fσ ⁻¹			1000	77 9	13
15.	(Nanospheres)	11y di otnormui	at % Ag^{-1}			1000	11.5	15
14	Ni ₂ S ₂	Hydrothermal	694 Fg ⁻¹	1 96	06 w	5000	893	14
	(Nanoarray)		at 3.45	mWhcm	cm ⁻³		07.0	
			Ag ⁻¹	-3				
15.	NiS/rGO	Hydrothermal	579 Fg ⁻¹			2000	90.90	15
	(Nanorods)	5	at 5 Ag ⁻¹					
16.	Ni ₃ S ₂ -NiS	Hydrothermal	1077.3			10000	76.3	16
	(Nanowires)		Fg ⁻¹ at 5					
			Ag ⁻¹					
17.	Ni ₃ S ₂ /CNT	CVD	514 Fg ⁻¹			1500	88	17
	(Nanosheets)		at 4 Ag ⁻¹					
18.	V ₂ O ₅ (Flakes)	CBD	735 F g ⁻¹			1000	71	18
			at					
			1 mV s ⁻¹					

Table (1): Summary of capacitive performances for Ni_9S_8 composites in supercapacitor.

19.	V ₂ O ₅ /MWCNTs	CBD	629 F g ⁻¹			4000	93	19
	(Flakes)		at 2 A g^{-1}					
20.	Fe ₂ O ₃ /	SILAR	431 F g ⁻¹	38.89	800 W	500	65	20
	MWCNTs		at 5 mV s ⁻	Wh kg ⁻¹	kg-1			
	(Nanoparticles)		1	_				
21.	Ni ₉ S ₈ /GF	CBD	2055 Fg ⁻¹	45.66	407			Present
	(Nanoparticles)		at 2 Ag ⁻¹	Wh Kg-	W kg ⁻¹			work
				1				

Table (2): Summary for Ni_9S_8 and asymmetric device performance in supercapacitor.

Sr. No.	Material	Method for deposition	Capacitance ¤t density	Energy density	Power density	Cycles	Stability %	Ref.
1.	NiS//AC	Hydrothermal	69.1 Fg ⁻¹ at 1 Ag ⁻¹	31 Wh Kg ⁻¹	0.9 kW kg ⁻¹	1000	48.8	1
2.	NiS/GNS/CNT/ /AC	Hydrothermal		14 Wh kg ⁻¹	16 kWh kg-1	1000		6
3.	NiS/rGO//ZIF-8 derived carbon	Hydrothermal	47.85 Fg ⁻¹ at 2 Ag ⁻¹	17.01 Wh kg ⁻¹	10 kW kg-1		78.91	7
4.	NiS//NiS	CBD	104 Fg ⁻¹ at 5 mVs ⁻¹	28 Wh kg ⁻¹	4.98 kW kg ⁻¹	3000	85.3	8
5.	NiS/rGO//AC	Hydrothermal	79.7 Fg ⁻¹ at 0.2 Ag ⁻¹	18.7 Wh kg ⁻¹	124 W kg ⁻¹	1000		11
6.	V ₂ O ₅ //V ₂ O ₅	CBD	358 F g ⁻¹ at 1 mV s ⁻¹	43 Wh kg-1	900 W kg-1	1000	88	18
7.	V ₂ O ₅ /MWCNT/ / V ₂ O ₅ /MWCNT	CBD	$\begin{array}{c} 160 \text{ F g}^{-1} \text{ at} \\ 1 \text{ A g}^{-1} \end{array}$	72.07 Wh kg ⁻¹	2.3 kW kg ⁻¹	4000	96	19
8.	PG-MSCs (Nanosheets)	Filtration	9.8 mF cm ⁻ ² at 5 mV s ⁻ ¹	11.6 mWh cm ⁻³		2000	89.5	21
9.	$\begin{array}{c} Ti_{3}C_{2}T_{x} MX ene \\ (Nanosheet) \end{array}$	Vacuum- assistant filtration	126 F g ⁻¹ at100 A g ⁻¹			100,000	92.4	22
10.	NixSy/rGO//G	Hydrothermal		46 Wh kg ⁻¹	1.8 kW kg ⁻¹	5000	80	23
11.	Ni ₉ S ₈ /GF//AC/ NF	CBD	143.7 at 3.0 A g ⁻¹	51.11 Wh Kg ⁻	2.66 kW kg ⁻¹			Present work

Reference:

- B. Guan, Y. Li, B. Yin, K. Liu, D. Wang, H. Zhang, C. Cheng, Chem. Eng. J., 2017, 308, 1165-1173.
- 2) X. Y. Yu, L. Yu, H. B. Wu, X. W. (David) Lou, Angew. Chem., 2015, 127, 1-6.
- 3) C. Sun, M. Ma, J. Yang, Y. Zhang, P. Chen, W. Huang, X. Dong, Sci. Rep., 2014, 4, 1-6.
- A. Wang, H. Wang, S. Zhang, C. Mao, J. Song, H. Niu, B. Jin, Y. Tian, Appl. Surf. Sci., 2013, 282, 704-708.
- H. Zhang, X. Yu, D. Guo, B. Qu, M. Zhang, Q. Li, T. Wang, ACS Appl. Mater. Interfaces, 2013, 5, 7335-7340.
- H. Chen, J. Li, C. Long, T. Wei, G. Ning, J. Yan, Z. Fan, J. Marine Sci. Appl., 2014, 13, 462-466.
- P. R. Jothi, R. R. Salunkhe, M. Pramanik, S. Kannan, Y. Yamauchi, RSC Adv., 2016, 6, 21246-21253.
- A. M. Patil, V. C. Lokhande, A. C. Lokhande, N. R. Chodankar, T. Ji, J. H. Kim, C. D. Lokhande, RSC Adv., 2016, 6, 68388-68401.
- C. A. Pandey, S. Ravuri, R. Ramachandran, R. Santhosh, S. Ghosh, S. R. Sitaraman, A. N. Grace, Int. J. Nanosci., 2017, 16, 1-7.
- L. Peng, X. Ji, H. Wan, Y. Ruan, K. Xu, C. Chen, L. Miao, J. Jiang, Electrochim. Acta, 2015, 182, 361–367.
- 11) F. Cai, R. Sun, Y. Kang, H. Chen, M. Chen, Q. Li, RSC Adv., 2015, 5, 23073-23079.
- 12) S. W. Chou, J. Y. Lin, J. Electrochem. Soc., 2013, 160, D178-D182.
- 13) Z. Xing, Q. Chu, X. Ren, J. Tian , A. M. Asiri, K. A. Alamry, A. O. Al-Youbi, X. Sun, Electrochem. Commun., 2013, 32, 9-13.
- 14) X. Xiong, B. Zhao, D. Ding, D. Chen, C. Yang, Y. Lei, M. Liu, NPG Asia Mater., 2016, 8, 1-7.
- 15) J. Yang, X. Duan, W. Guo, D. Li, H. Zhang, W. Zhengn, Nano Energy, 2014, 5, 74-81.
- 16) X. Zang, Z. Dai, J. Yang, Y. Z. Zhang, W. Huang, X. C. Dong, ACS Appl. Mater. Interfaces, 2016, 8, 24645-24651.
- 17) T. Zhu, H. B. Wu, Y. Wang, R. Xu, X. W. (David) Lou, Adv. Energy Mater., 2012, 2, 1497-1502.

- 18) B. Pandit, D. P. Dubal, B. R. Sankapal, Electrochim. Acta, 2017, 242, 382-389.
- 19) B. Pandit, D. P. Dubal, P. G. Romero, B. B. Kale, B. R. Sankapal, Sci. Rep., 2017, 7, 1-12.
- 20) S. S. Raut, B. R. Sankapal, New J. Chem., 2016, 40, 2619-2627.
- 21) H. Xiao, Z. S. Wu, L. Chen, F. Zhou, S. Zheng, W. Ren, H. M. Cheng, X. Bao, ACS Nano, 2017, 11, 7284-7292.
- 22) L. Yu, L. Hu, B. Anasori, Y. T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi, B. Xu, ACS Energy Lett., 2018, **3**, 1597-1603.
- 23) S. Dai, B. Zhao, C. Qu, D. Chen, D. Dang, B. Song, B. M. deGlee, J. Fu, C. Hu, C. P. Wong, M. Liu, Nano Energy, 2017, 33, 522-531.