Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supplementary Information

Highly efficient nitrobenzene and alkyl/aryl azide reduction in stainless steel jars without catalyst addition

Katia Martina,^a Francesca Baricco,^a Silvia Tagliapietra,^a Maria Jesus Moran,^a Giancarlo Cravotto^{a,*} and Pedro Cintas.^{b*}

^aDipartimento di Scienza e Tecnologia del Farmaco and NIS, Centre for Nanostructured Interfaces and Surfaces, University of Turin, Via P. Giuria 9, 10125 Turin, Italy.

^bDepartamento de Química Orgánica e Inorgánica, Facultad de Ciencias-UEX, and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Avda. de Elvas s/n, 06006 Badajoz, Spain

Email: giancarlo.cravotto@unito.it.

Table of Contents

General Information	S2
General procedure	S2
General Procedure for the nitrobenzene reduction reaction	S2
General Procedure for the aryl azide reduction reaction	S2
General Procedure for the alkyl azide reduction reaction	S3
Characterization of the products	S4
Nitro aryl reduction	S4
Aryl azides reduction reactions	\$15
Alkyl azides reduction reactions	S18

General Information

All chemicals were purchased from Sigma-Aldrich (Milan, Italy) and used without further purification. Reactions were monitored by TLC on Merck 60 F254 (0.25 mm) plates (Milan, Italy), which were visualized by UV inspection and/or by heating after a spraying with 0,5% ninhydrin in ethanol or phosphomolybdic acid. Mechanochemical reactions were carried out in a Planetary Ball Mill (PM100 Retsch GmbH, Haan, Germany) using either 50 mL grinding jars and milling balls (both made in stainless steel). NMR spectra (300 MHz and 75 MHz for ¹H and ¹³C, respectively) were recorded on a Bruker 300 Avance instrument (Milan, Italy) at 25 °C. Chemical shifts were calibrated to the residual proton and carbon resonances of the solvent; DMSO-d₆ (δ H = 2.54, δ C = 39.5), CDCl₃ (δ H = 7.26, δ C = 77.16), D₂O (δ H = 4.79). Chemical shifts (δ) are given in ppm, and coupling constants (J) in Hz. GC-MS analyses were performed in a GC Agilent 6890 (Agilent Technologies, Santa Clara, CA, USA) that was fitted with a mass detector Agilent Network 5973, using a 30 m capillary column, i.d. of 0.25 mm and film thickness 0.25 μ m. GC conditions were: injection split 1:20, injector temperature 250 °C, detector temperature 280 °C. Gas carrier: helium (1.2 mL/min), temperature program: from 70 °C (2 min) to 300 °C at 5 °C/min. The cations were determined with a Perkin Elmer Optima 7000 (Perkin Elmer, Norwalk, Connecticut, USA) inductively coupled plasma-optical emission spectrometer (ICP-OES).

General procedure

General Procedure for the nitrobenzene reduction reaction

The milling jar (50 mL; stainless steel) was equipped with 1500 milling balls ($\emptyset = 2$ mm, stainless steel) and 48 medium balls ($\emptyset = 5$ mm, stainless steel). Nitrobenzene (0.5 mmol), ammonium formate (15 mmol), KOH (1 mmol), and basic Al₂O₃ (1 g) were added in the given order. Milling was performed at 650 rpm for 30 min, 1, 1.5 and 2 hours. After the milling jar was cooled to room temperature, the crude products were transferred and the solid washed with CH₂Cl₂ (3 × 10 mL) and water (3 × 10 mL). The desired product was extracted in organic phase, washed with H₂O three times and finally dried (Na₂SO₄). When impure, products were purified by flash chromatography on silica gel (hexane–EtOAc). Products were analysed using ¹H NMR and ¹³C NMR spectroscopy, MS and GC-MS chromatography.General Procedure for the aryl azide reduction reaction

The milling jar (50 mL; stainless steel) was equipped with 1500 milling balls ($\emptyset = 2$ mm, stainless steel) and 48 medium balls ($\emptyset = 5$ mm, stainless steel). The aryl azides (0.5 mmol), sodium formate (10 mmol), KOH (1 mmol), and basic Al₂O₃ (1 g) were added in the given order. Milling was accomplished at 650 rpm for 1 and 1.5 hours. After the milling jar was cooled to room temperature, the crude products were transferred and the solid washed with CH₂Cl₂ (3 × 10 mL) and water (3 × 10 mL). The desired product was extracted in organic phase, washed with H₂O three times and finally dried (Na₂SO₄). When impure, products were purified by flash chromatography on silica gel (hexane–EtOAc). Products were analysed using ¹H NMR and ¹³C NMR spectroscopy, MS and GC-MS chromatography.

General Procedure for the alkyl azide reduction reaction

The milling jar (50 mL; stainless steel) was equipped with 1500 milling balls ($\emptyset = 2$ mm, stainless steel) and 48 medium balls ($\emptyset = 5$ mm, stainless steel). The alkyl azides (0.5 mmol), hydrazine (15 mmol), KOH (1 mmol) and basic Al₂O₃ (1 g) were added in the given order. Milling was

accomplished at 650 rpm for 1 hour. After the milling jar was cooled to room temperature, the crude products were transferred and the solid washed with CH_2Cl_2 (3 × 10 mL) and water (3 × 10 mL). The desired product was extracted in organic phase, washed with H_2O three times and finally dried (Na₂SO₄). When impure, products were purified by flash chromatography on silica gel (hexane–EtOAc). Products were analysed using ¹H NMR and ¹³C NMR spectroscopy, MS and GC-MS chromatography.

Characterization of the products

Nitro aryl reduction

Aniline (Table 4, Entry 1), (Table 6, Entry 1)^{1: 1}H NMR (300 MHz, CDCl₃) δ 7.26 (2H, t, J = 6 Hz), 6.86 (1H, t, J = 9 Hz), 6.76 (2H, t, J = 6 Hz), 3.63 (2H, s) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 146.57, 129.30, 118.40, 115.12 ppm.

Figure 2. ¹³C-NMR (75 MHz, CDCl₃) of Aniline (Table 4, Entry 1), (Table 7, Entry 1).

p-Bromoaniline (Table 4, Entry 2)²: ¹H NMR (300 MHz, CDCl₃) δ 7.17 (2H, d, J = 9 Hz), 6.49 (2H, d, J = 9 Hz) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 145.70, 132.27, 117.00, 110.44 ppm.

Figure 4.¹³C-NMR (75 MHz, CDCl₃) of *p*-Bromoaniline (Table 4, Entry 2).

*p***-lodooaniline (Table 4, Entry 3)**²: ¹H NMR (300 MHz, CDCl₃) δ 7.40 (2H, d, J = 9 Hz), 6.47(2H, d, J = 9 Hz) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 146.35, 138.20, 117.60, 79.68. ppm.

Figure 6. ¹³C-NMR (75 MHz, CDCl₃) of p-lodoaniline (Table 4, Entry 3).

p-Chloroaniline (Table 4, Entry 4)¹: ¹H NMR (300 MHz, CDCl₃) δ 7.10 (2H, d, J = 9 Hz), 6.61 (2H, d, J = 9 Hz) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 145.17, 129.42, 123.51, 116.59 ppm.

p-Aminophenol (Table 4, Entry 5)³: ¹H NMR (300 MHz, DMSO-d₆) δ 6.54- 6.45 (4H, m) ppm; ¹³C NMR (75 MHz, DMSO-d₆) δ 149.47, 140.89, 116.48 ppm.

Figure 10. ¹³C-NMR (75 MHz, DMSO-d₆) of p-Aminophenol (Table 4, Entry 5).

Benzene-1,4-diamine (Table 4, Entry 6)³**:** ¹H NMR (300 MHz, CDCl₃) δ (4H, s) 6.56 ppm; ¹³C NMR (75 MHz, CDCl₃) δ 138.98, 117.11 ppm.

Figure 11. ¹H NMR (300 MHz, CDCl₃) of benzene-1,4-diamine (Table 4, Entry 6).

Figure 12. 13 C-NMR (75 MHz, CDCl₃) of benzene-1,4-diamine (Table 4, Entry 6).

*p***-Nitroaniline (Table 4, Entry 7)⁴:** ¹H NMR (300 MHz, DMSO-d₆) δ 7.98 (2H, d, J = 9 Hz), 6.64 (2H, d, J = 9 Hz) ppm; ¹³C NMR (75 MHz, DMSO-d₆) δ 156.67, 136.63, 127.37, 113.35 ppm.

Figure 14. ¹³C-NMR (75 MHz, DMSO-d₆) of *p*-Nitroaniline (Table 4, Entry 7).

3-Aminopiridine (Table 4, Entry 8)⁵: ¹H NMR (300 MHz, CDCl₃) δ 8.10- 8.01 (2H, m), 7.10- 7.06 (1H,m), 6.99-6.96 (1H,m) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 142.88, 140.14, 137.60, 124.13, 121.94 ppm.

Figure 16.¹³C-NMR (75 MHz, CDCl₃) of 3-Aminopiridine (Table 4, Entry 8).

p-Aminoacetophenone (Table 4, Entry 9)⁶: ¹H NMR (300 MHz, CDCl₃) δ 7.80 (2H, d, J = 9 Hz), 6.64(2H, d, J = 9 Hz), 2.50 (3H, s) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 196.85, 151.38, 131.13, 129.76, 114.07, 26.44 ppm.

Figure 18.¹³C-NMR (75 MHz, CDCl₃) of *p*-Aminoacetophenone (Table 4, Entry 9).

5-Aminoindole (Table 4, Entry 10): ¹H NMR (300 MHz, CDCl₃) δ 7.20 (1H, d, J = 6 Hz) 7.12 (1H, t, J = 3 Hz), 6.96 (1H, m), 6.68 (1H, dd, J = 9 Hz), 6.38 (1H, m) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 139.87, 131.08, 129.16, 125.15, 113.36, 111.94, 105.96, 101.93 ppm.

Figure 20. ¹³C-NMR (75 MHz, CDCl₃) of 5-Aminoidole (Table 4, Entry 11).

1-Naphthylamine (Table 4, Entry 11), (Table 6, Entry 4) ⁷: ¹H NMR (300 MHz, CDCl₃) δ 8.66, 7.77, 7.73, 7.70, 7.39, 7.38, 7.37, 7.23, 7.21, 6.66, 6.62 ppm; ¹³C NMR (75 MHz, CDCl₃) δ 145.43, 134.68, 128.95, 126.71, 126.14, 125.26, 121.92, 121.05, 119.67, 111.06 ppm.

777

Figure 21. ¹H NMR (300 MHz, CDCl₃) of 1-Naphthylamine (Table 4, Entry 12), (Table 6, Entry 4).

Figure 22. ¹³C-NMR (75 MHz, CDCl₃) of 1-Naphthylamine (Table 4, Entry 12), (Table 6, Entry 4).

Aryl azides reduction reactions:

p-Methoxyaniline (Table 6, Entry 2)⁷: ¹H NMR (300 MHz, CDCl₃) δ 6.74 (2H, d, J = 9 Hz), 6.64 (2H, d, J = 9 Hz), 3.74 (3H, s) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 153.10, 140.23, 116.72, 115.10, 56.04 ppm.

Figure 24. ¹³C-NMR (75 MHz, CDCl₃) of *p*-Methoxyaniline (Table 6, Entry 2).

o-Toluidine (Table 6, Entry 3)¹⁶: ¹H NMR (300 MHz, CDCl₃) δ 7.07-7.02 (2H, m), 6.77- 6.67 (2H, m), 2.18 (3H, s) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 144.85, 130.76, 127.28, 122.64, 118.94, 115.23, 17.68 ppm.

Figure 26. ¹³C-NMR (75 MHz, CDCl₃) of *o*-Toluidine (Table 6, Entry 3).

2-Chloroaniline (Table 6, Entry 5)¹⁶**:** ¹H NMR (300 MHz, CDCl₃) δ 7.25-22 (1H, m), 7.06 (1H, t, J = 6 Hz), 6.76 (1H, d, J = 6 Hz), 6.68 (1H, t, J = 6 Hz) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 143.11, 129.64, 127.85, 119.25, 116.09 ppm.

Figure 28. ¹³C-NMR (75 MHz, CDCl₃) of 2-Chloroaniline (Table 6, Entry 5).

Alkyl azides reduction reactions:

Benzylamine (Table 7, Entry 1)⁸: ¹H NMR (300 MHz, CDCl₃) δ 7.24-7.10 (5H, m), 3.70 (2H, s) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 143.16, 128.29, 126.87, 126.53, 46.23.

Figure 30. ¹³C-NMR (75 MHz, CDCl₃) of Benzylamine (Table 7, Entry 1).

1-Phenylethylamine (Table 7, Entry 2)⁹**:** ¹H NMR (300 MHz, CDCl₃) δ 7.37-7.24 (5H, m), 4.13 (1H, q, J = 6 Hz), 1.40 (3H, d, J = 9 HZ) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 147.66, 128.85, 127.24, 126.07, 51.69, 25.79 ppm.

Figure 32. ¹³C-NMR (75 MHz, CDCl₃) of 1-Phenylethylamine (Table 7, Entry 2).

3-Chlorobenzylamine (Table 7, Entry 3)¹⁰: ¹H NMR (300 MHz, CDCl₃) δ 7.33-7.30 (1H, m), 7.28- 7.19 (3H, m), 3.87 (2H, s) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 145.57, 134.64, 130.08, 127.52, 127.20, 125.48, 77.36, 46.25 ppm.

Figure 34. ¹³C-NMR (75 MHz, CDCl₃) of 3-Chlorobenzylamine (Table 7, Entry 3).

3-Methoxybenzylamine (Table 7, Entry 5)¹¹: ¹H NMR (300 MHz, CDCl₃) δ 7.16 (1H, t, J = 6 Hz), 6.81-6.79 (2H, m), 6.72- 6.68 (1H, m), 3.96 (2H, s), 3.72 (3H, s) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 160.24, 145.38, 129.96, 119.73, 112.98, 112.64, 55.60, 46.84 ppm.

Figure 36. ¹³C-NMR (75 MHz, CDCl₃) of 3-Methoxybenzylamine (Table 7, Entry 5).

3-Benzyloxypropylamine (Table 7, Entry 6)¹²: ¹H NMR (300 MHz, CDCl₃) δ 7.30-7.19 (5H, m), 4.43 (2H, s), 3.48 (2H, t, J = 6 Hz), 2.68 (2H, t, J = 6 Hz), 1.70 (2H, q, J = 6 Hz) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 138.68, 128.69, 127.93, 127.88, 73.29, 68.60, 39.72, 33.16.

Figure 38. ¹³C-NMR (75 MHz, CDCl₃) of 3-Benzyloxypropylamine (Table 7, Entry 6).

1-Octanamine (Table 7, Entry 7)¹⁰: ¹H NMR (300 MHz, CDCl₃) δ 2.67 (2H, t, J = 9Hz), 1.43-1.40 (2H, m), 1.27 (10H, m), 0.87 (3H, t, J = 6 Hz) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 42.57, 34.13, 32.18, 29.80, 29.64, 27.24, 23.00, 14.44 ppm.

Figure 40. ¹³C-NMR (75 MHz, CDCl₃) of 1-Octanamine (Table 7, Entry 7).

1,6-Diaminohexane (Table 7, Entry 8)¹³: ¹H NMR (300 MHz, CDCl₃) δ 2.41 (4H, t, J = 6 Hz), 1.54 (4H, q, J = 3 Hz), 1.31 (4H, q, J = 3 Hz) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 42.35, 33.98, 27.00 ppm.

Figure 42.¹³C-NMR (75 MHz, CDCl₃) of 1,6-Diaminohexane (Table 7, Entry 8).

1,8-Diaminooctane (Table 7, Entry 9)¹⁴: ¹H NMR (300 MHz, D₂O) δ 2.58 (4H, t, J = 6 Hz), 1.43- 1.38 (4H, m), 1.28 (8H, m) ppm; ¹³C NMR (75 MHz, D₂O) δ 40.84, 31.77, 28.88, 26.37 ppm.

Figure 44. ¹³C-NMR (75 MHz, D₂O) of 1,8-Diaminooctane (Table 7, Entry 9).

6-Amino-1-hexanol (Table 7, Entry 10)¹⁵: ¹H NMR (300 MHz, CDCl₃) δ 3.54 (2H, t, J = 6 Hz), 2.68 (2H, t, J = 6 Hz), 1.53-1.30 (8H, m) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 62.58, 42.32, 33.17, 33.12, 27.00, 26.03 ppm.

Figure 45. ¹H NMR (300 MHz, CDCl₃) of 6-Amino-1-hexanol (Table 7, Entry 10).

Figure 46. ¹³C-NMR (75 MHz, CDCl₃) of 6-Amino-1-hexanol (Table 7, Entry 10).

10-Undecen-1-amine (Table 7, Entry 11)¹⁶: ¹H NMR (300 MHz, CDCl₃) δ 5.86- 5.73 (1H, m), 5.00-4.89 (2H, m), 2.66 (2H, t, J = 6Hz), 2.02 (2H, q, J = 6 Hz), 1.82- 1.60 (2H, m), 1.44-1.24 (12H, m) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 139.54, 114.41, 42.50, 34.12, 32.23, 29.89, 29.44, 29.24, 27.20 ppm.

Figure 48. ¹³C-NMR (75 MHz, CDCl₃) of 10-Undecen-1-amine (Table 7, Entry 11).

⁴ A. Naghipour, A. Ghorbani-Choghamarani, F. Heidarizadi, B. Notash, *Polyhedron*, 2016, **105**, 18.

- ⁹ Y. Xie, H. Pan, X. Xiao, S. Lia, Y. Shi, Org. Biomol. Chem., 2012, 10, 8960.
- ¹⁰ J. Z. Saavedra, A. Resendez, A. Rovira, S. Eagon, D. Haddenham, B. Singaram, J. Org. Chem., 2012, **77**, 221.
- ¹¹ M. A. Ayedi, Y. Le Bigot, H. Ammar, S. Abid, R. El Gharbi, M. Delmas, *Synthetic Communications*, 2013, **43**, 2127.
- ¹² B. G. Jones, S. K. Branch, A. S. Thompson, M. D. Threadgill, J. Chem. Soc. Perkin Trans, 1996, 1, 2685.
- ¹³ S. Liu, Y. Yang, X. Zhen, J. Li, H. He, J. Fenga, A. Whiting, *Org. Biomol. Chem.*, 2012, **10**, 663.
- ¹⁴ W. H. Huang, P. Y. Zavalij, L. Isaacs, Org. Lett., 2008, **10**, 2577.
- ¹⁵ Y. Kita, T. Higuchi, K. Mashima, *Chem. Commun.*, 2014, **50**, 11211.

¹⁶ R. Cao, J. Zhou, W. Wang, W. Feng, X. Li, P. Zhang, P. Deng, L. Yuan, B. Gong, Org. Lett., 2010, **12**, 2958.

¹ O. Kreye, S. Wald, M. A. R. Meier, *Adv. Synth. Catal.*, 2013, **355**, 81.

² U. Sharma, N. Kumar, P. K. Verma, V. Kumar, B. Singh, *Green Chem.*, 2012, **14**, 2289.

³ E. Vasilikogiannaki, C. Gryparis, V. Kotzabasaki, I. N. Lykakis, M. Stratakis, Adv. Synth. Catal., 2013, 355, 907.

⁵ K. Wieszczycka, J. Zembrzuska, *Photochem and Photobiol*, 2015, **91**, 786.

⁶ M. Kumar, U. Sharma, S. Sharma, V. Kumar, B. Singh, N. Kumar, RSC Advances, 2013, **3**, 4894.

⁷ A. Borzenko, N. L. Rotta-Loria, P. M. MacQueen, C. M. Lavoie, R. McDonald, M. Stradiotto, *Angew. Chem. Int. Ed.*, 2015, **54**, 3773.

⁸ H. Saneyoshi, T. Ochikubo, T. Mashimo, K. Hatano, Y. Ito, H. Abe, *Org. Lett.*, 2014, **16**, 30.