Electronic Supplementary Material (ESI) for New Journal of Chemistry.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Materials for “Preparation of rhodium(lll) cis-diaquacomplex by a protic acid
induced oxalate-releasing from mer-[Rh(C,0,)Cl(py)s.”

by Danila Vasilchenko, Sergey Tkacheyv, Iraida Baidina, Ilya Korolkov, Korolkov, Semen

Berdyugin, Anna Kurenkova, Ekaterina Kozlova, and Denis Kozlov

Table 1S. Crystal data and experimental details for 1 and {3:(Cl0,4),}-2H,0

Compound 1 {3:(Cl04),}2H,0
Empirical formula C17H15CIN3O4RN C15H,1CIsN3044RN
Formula weight 463.68 628.61
Temperature, K 296(2) K 150(2) K
Crystal system orthorhombic triclinic
Space group P2,2:24 P-1
a, A 9.9999(6) 9.930(1)
b, A 12.0930(7) 11.073(1)
c, A 14.9368(8) 12.005(1)
a° 90.00 105.068(4)°
B,° 90.00 103.546(4)°
Vv, ° 90.00 104.836(4)°
Volume, A3 1806.3(2) 1166.4(2)
z 4 2
Pealcy 8/CM3 1.705 1.790
p/mm1 1.121 1.136
F(000) 928 632
Crystal size, mm?3 0.24x0.12x0.10 0.14 x0.08 x 0.07
Radiation Mo K (A = 0.71073 A) Mo K (A = 0.71073 A)
0 range, ° 2.17 to 30.60 2.23t0 29.25
-13<h <14, -14<h <14,
Index ranges -17<k<16, -15<k<15,
-21<1<21 -17<1<17
Reflections collected 31362 23552
Independent reflections 5538 7207
Rint 0.0393 0.0492
Data/restraints/parameters 5538 /0/ 250 7206 /3 /298
Goodness-of-fit on F2 1.037 1.070
Final R indexes [l > 25(l)] Ry =0.0284, Ry =0.0497,
wR;, =0.0654 wR; =0.1146
] ] R, = 0.0365, R, = 0.0733,
Final R indexes [all data]
wR, =0.0683 wR, =0.1220
Largest diff. peak/hole, e-A3 1.592 /-0.354 2.691/-1.988




Figure 1S.The column packing of molecules of 1 along b axis.
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Figure 2S. ESI-MS for {3:(ClO4),}-2H,0 (positive mode; ACN).
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Scheme S1. Proposed mechanism for oxalate detaching from 1 in acidic aqueous solutions.
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Figure 3S. Kinetic traces depicting the change of species 1, 2 and 3 fractions during aquation reaction of
1in 6.00 M TFMSA solution. Temperature is 25°C
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Figure 4S. Kinetic traces depicting the change of species 1, 2 and 3 fractions during aquation reaction of
1in 6.37 M TFMSA solution. Temperature is 25°C.
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Figure 5S. Kinetic traces depicting the change of species 1, 2 and 3 fractions during aquation reaction of
1in 6.75 M TFMSA solution. Temperature is 25°C.
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Figure 6S. Kinetic traces depicting the change of species 1, 2 and 3 fractions during aquation reaction of
1in 7.12 M TFMSA solution. Temperature is 25°C.
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Figure 7S. Kinetic traces depicting the change of species 1, 2 and 3 fractions during aquation reaction of
1in 7.50 M TFMSA solution. Temperature is 25°C.



DFT Calculations

Geometry optimization was carried out using the Gaussian 09C software package [1]. The data
from crystal structure were used as an initial system state for not protonated complex. The
calculations were performed using the B3LYP [2,3,4,5] method and LANL2DZ [6,7,8,9,10] basis
set for entire molecules placed in a cavity within the water reaction field (SCRF solvent method
[11]). The data obtained were then used for single point calculations performed with ADF-2017
software package [12,13,14]. The basis sets [15] for each atom type summarized in a Table 2S
was chosen on the basis of computer efficiency and precision. B3LYP method and COSMO [16]
solvation method (solvent — water) with Delley surfaces were used for calculations. The partial
atomic charges were found within the Charge Model 5[17].

Table 2S. Basis sets used for or single point calculations performed with ADF-2017

Rh ZORA*/TZ2P with 3d frozen core
N ZORA/TZP
cl AUG-TZP
0} ET-QZ3P
C ET-QZ3P
H ET-QZ3P

*-zero order relativistic approximation
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Figure 8S. The DFT-calculated charge distribution on oxalate ligand in 1 complex.



Figure 10S. The DFT-calculated structures of the aquated intermediates 2

Table 3S. Cartesian coordinates (Angstrom) for DFT calculated structure of 1.

Atom | x y z Atom | x y z

Rh -0.00003 | -0.14591 | -0.27810 | H -2.23581 | 0.79941 | 1.55856
N -2.07986 | -0.22506 | -0.25604 | C -0.00006 | 2.87146 | -0.77497
N -0.00020 | 1.89894 | 0.17844 | C -0.00047 | 4.60969 | 0.91674
N 2.07981 | -0.22480 | -0.25587 | C -0.00059 | 3.59972 | 1.89721
Cl 0.00000 | 0.24150 | -2.71353 | C -0.00045 | 2.25870 | 1.49729
o) 0.00013 | -2.19276 | -0.52771 | C -0.00019 | 4.23267 | -0.43781
0] -0.00003 | -0.68433 | 1.70344 | H -0.00053 | 1.44935 | 2.21761
C 0.00051 | -2.87990 | 0.61361 | H -0.00060 | 5.65751 | 1.20025
C 0.00034 | -2.00644 | 1.91264 | H -0.00078 | 3.83739 | 2.95518
0] 0.00050 | -2.52829 | 3.04992 | H 0.00017 | 2.53806 | -1.80389
0] 0.00077 | -4.13182 | 0.68497 | H -0.00007 | 4.97322 | -1.23012
C -2.73221 | -0.88677 | -1.25242 | C 2.79347 | 0.30939 | 0.77337
C -2.79349 | 0.30856 | 0.77351 | C 4.18988 | 0.21522 | 0.82891
C -4.12704 | -1.01904 | -1.25434 | C 4.87300 | -0.45693 | -0.20166




C -4.87300 | -0.45784 | -0.20150 | C 4.12702 | -1.01873 | -1.25417
C -4,18987 | 0.21406 | 0.82923 | C 2.73216 | -0.88676 | -1.25210
H -2.11710 | -1.29964 | -2.03976 | H 2.23579 | 0.80044 | 1.55829
H -4.60900 | -1.55218 | -2.06636 | H 4.72025 | 0.65651 | 1.66535
H -5.95478 | -0.54597 | -0.18151 | H 5.95480 | -0.54486 | -0.18177
H -4.72020 | 0.65487 | 1.66594 | H 2.11700 | -1.30012 | -2.03914
H 4.60900 | -1.55203 | -2.06606

Table 4S. Cartesian coordinates (Angstrom) for DFT calculated structure of 1-H* protonated by O1 atom.

Atom | x y z Atom | x y z

Rh 0.00003 | -0.10645 | 0.29989 | C -0.00048 | 2.88628 | 0.68908
N 2.08603 | -0.17616 | 0.27619 | C 0.00023 | 4.55359 | -1.07297
N -0.00025 | 1.87909 | -0.22865 | C 0.00037 | 3.50598 | -2.01260
N -2.08592 | -0.17667 | 0.27571 | C 0.00006 | 2.18218 | -1.56277
cl -0.00036 | 0.34698 | 2.69170 | C -0.00031 | 4.23093 | 0.29508
0] 0.00042 | -2.22665 | 0.60382 | H 0.00001 | 1.35004 | -2.25510
o) 0.00035 | -0.75855 | -1.68986 | H 0.00053 | 5.58904 | -1.39788
C 0.00020 | -2.84548 | -0.49614 | H 0.00072 | 3.70012 | -3.07905
C 0.00005 | -2.06797 | -1.84081 | H -0.00080 | 2.59885 | 1.73055
o) -0.00040 | -2.72993 | -2.90290 | H -0.00058 | 5.00106 | 1.05821
O -0.00000 | -4.17170 | -0.55440 | C -2.78069 | 0.26805 | -0.80935
C 2.76035 | -0.73041 | 1.32385 | C -4.17678 | 0.18743 | -0.87250
C 2.78069 | 0.26831 | -0.80901 | C -4.88131 | -0.37551 | 0.20762
C 4.15617 | -0.84455 | 1.31811 | C -4.15603 | -0.84453 | 1.31806
C 4.88137 | -0.37557 | 0.20760 | C -2.76021 | -0.73062 | 1.32357
C 4.17676 | 0.18749 | -0.87240 | H -2.21076 | 0.67525 | -1.63248
H 2.16721 | -1.07103 | 2.16121 | H -4.69021 | 0.55556 | -1.75345
H 4.65429 | -1.29223 | 2.17069 | H -5.96375 | -0.45063 | 0.18213
H 5.96379 | -0.45091 | 0.18191 | H -2.16694 | -1.07109 | 2.16093
H 4.69008 | 0.55546 | -1.75348 | H -4.65411 | -1.29195 | 2.17080
H 2.21067 | 0.67557 | -1.63206 | H -0.00018 | -4.50456 | -1.48924

Table 5S. Cartesian coordinates (Angstrom) for DFT calculated structure of 1-H* protonated by 02 atom.

Atom | x Y z Atom | x y z

Rh 0.00263 | -0.11797 | -0.27703 | C -0.03073 | 2.89513 | -0.74450
N -2.08078 | -0.21077 | -0.27768 | C -0.04880 | 4.60680 | 0.97429
N -0.01638 | 1.90916 | 0.19509 | C -0.03398 | 3.58263 | 1.94021
N 2.08744 | -0.18163 | -0.27459 | C -0.01813 | 2.24887 | 1.52084
cl 0.00762 | 0.27519 | -2.65305 | C -0.04705 | 4.25032 | -0.38506
o) 0.01602 | -2.18243 | -0.55355 | H -0.00687 | 1.43825 | 2.23917
0] 0.00596 | -0.78249 | 1.74311 | H -0.06131 | 5.64988 | 1.27361
C 0.02005 | -2.92100 | 0.54543 | H -0.03467 | 3.80358 | 3.00151
C 0.01512 | -2.04837 | 1.83265 | H -0.02878 | 2.58278 | -1.77919




0] 0.02064 | -2.69790 | 2.98595 | H -0.05803 | 5.00172 | -1.16664
0] 0.02682 | -4.16528 | 0.61813 | C 2.82815 | 0.46771 | 0.66645
C -2.70042 | -0.95090 | -1.24066 | C 4.22579 | 0.38703 | 0.68700
C -2.82790 | 0.40182 | 0.68289 | C 4.88254 | -0.38641 | -0.28794
C -4.09365 | -1.08831 | -1.27496 | C 4.10998 | -1.06049 | -1.25126
C -4.87299 | -0.45081 | -0.29244 | C 2.71522 | -0.93968 | -1.21828
C -4.22434 | 0.30300 | 0.70315 | H 2.29816 | 1.04868 | 1.40788
H -2.06380 | -1.42587 | -1.97391 | H 477742 | 0.91961 | 1.45339
H -4.54833 | -1.68457 | -2.05800 | H 5.96508 | -0.46431 | -0.29382
H -5.95449 | -0.54196 | -0.29925 | H 2.08357 | -1.44297 | -1.93677
H -4.78130 | 0.80654 | 1.48514 | H 4.57110 | -1.67239 | -2.01828
H -2.30343 | 0.96678 | 1.44065 | H 0.01730 | -2.13217 | 3.79680

Table 6S. Cartesian coordinates (Angstrom) for DFT calculated structure of 2 intermediate complex with

oxalato ligand coordinated in trans-position to chlorido ligand.

Atom | x Y z Atom | x y z
Rh 0.00604 | -0.32514 | -0.55884 | C 0.38658 | -2.70463 | 3.69630
N 2.09296 | -0.12663 | -0.61186 | C 0.24109 | -1.30591 | 3.65947
N 0.15339 | -1.35022 | 1.24510 | C 0.12689 | -0.65839 | 2.42433
N -2.07565 | -0.41442 | -0.52488 | C 0.41261 | -3.40824 | 2.47960
cl 0.09451 | -2.33299 | -1.94314 | H 0.01321 | 0.41573 | 2.35764
o) -0.34106 | 3.47121 | 2.36459 | H 0.47676 | -3.22862 | 4.64247
0] -0.11106 | 1.44365 | 0.53475 | H 0.21458 | -0.71448 | 4.56770
C -0.31708 | 3.72979 | 1.15399 | H 0.31153 | -3.21464 | 0.31941
C -0.21604 | 2.65379 | 0.04796 | H 0.52216 | -4.48660 | 2.45141
O -0.23911 | 2.98214 | -1.17554 | C -2.76871 | -0.11187 | 0.60815
0] -0.37559 | 4.98647 | 0.62757 | C -4.16829 | -0.12336 | 0.64028
C 2.81959 | -0.55258 | -1.68375 | C -4.87872 | -0.45010 | -0.52952
C 2.73365 | 0.48281 | 0.42631 | C -4.15538 | -0.75055 | -1.69805
C 4.20838 | -0.38024 | -1.74728 | C -2.75528 | -0.72400 | -1.66449
C 4.87535 | 0.24349 | -0.67758 | H -2.19641 | 0.15143 | 1.48592
C 4.11952 | 0.67983 | 0.42589 | H -4.68017 | 0.12276 | 1.56376
H 2.27881 | -1.04996 | -2.47695 | H -5.96404 | -0.46550 | -0.53114
H 4.74614 | -0.73377 | -2.61988 | H -2.16171 | -0.94561 | -2.53924
H 5.95099 | 0.38609 | -0.70327 | H -4.65849 | -1.00205 | -2.62498
H 458581 | 1.16783 | 1.27432 | H -0.43819 | 5.68458 | 1.32107
H 2.12424 | 0.82203 | 1.25168 | O -0.18722 | 0.73701 | -2.35155
C 0.29492 | -2.70642 | 1.27280 | H -0.17322 | 1.73290 | -2.15202
H 0.25255 | 0.44434 | -3.17005




Table 7S. Cartesian coordinates (Angstrom) for DFT calculated structure of 2 intermediate complex with
oxalato ligand coordinated in trans-position to pyridine ligand.

Atom | x y z
Rh -0.19229 | -0.08559 | 0.10506 | C | -2.96195 | 3.91797 | -0.40964
N 1.52659 | 1.09588 | 0.27875 | C | -2.26647 | 3.36426 | -1.50038
N -1.38734 | 1.61048 | -0.08475 | C | -1.49155 | 2.21608 | -1.30739
N -1.85355 | -1.33845 | -0.07131 | C | -2.85539 | 3.28856 | 0.84242
cl -0.43995 | -0.15698 | 2.51835 | H | -0.95427 | 1.75759 | -2.12640
0] 0.95239 | -1.82742 | 0.32292 | H | -3.56928 | 4.80882 | -0.53338
0] 2.50294 | -0.97983 | -2.01078 | H | -2.31754 | 3.80540 | -2.48937
C 2.08376 | -2.39893 | -0.00963 | H | -1.95786 | 1.63278 | 1.92291
C 2.95335 | -1.70582 | -1.09441 | H | -3.37384 | 3.67184 | 1.71416
0] 4.26435 | -1.99089 | -0.97805 | C | -2.92240 | -1.03062 | -0.86072
O 2.50072 | -3.48832 | 0.45730 | C | -4.02061 | -1.89031 | -0.98335
C 2.38872 | 0.88637 | 1.31507 | C | -4.02601 | -3.10215 | -0.26841
C 1.81601 | 2.05408 | -0.64594 | C | -2.92080 | -3.41219 | 0.54425
C 3.56046 | 1.64020 | 1.45904 | C | -1.85005 | -2.51243 | 0.62223
C 3.85839 | 2.63946 | 0.51447 | H | -2.90196 | -0.08950 | -1.39313
C 2.96862 | 2.84337 | -0.55617 | H | -4.84754 | -1.60687 | -1.62456
H 2.11618 | 0.11935 | 2.02659 | H | -4.86677 | -3.78438 | -0.34388
H 4.21795 | 1.44077 | 2.29780 | H | -0.97402 | -2.71349 | 1.22163
H 4.75913 | 3.23789 | 0.60671 | H | -2.87935 | -4.33429 | 1.11308
H 3.15705 | 3.59472 | -1.31459 | O | 0.10143 | -0.16860 | -1.97970
H 1.12585 | 2.17556 | -1.46819 | H | 4.82047 | -1.57522 | -1.67999
C -2.06395 | 2.13957 | 0.97487 | H | 1.05376 | -0.50258 | -2.13787
H | -0.55096 | -0.67811 | -2.50123
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