Supporting Materials

Facilely spraying fabrication of highly flexible and mechanically robust superhydrophobic F-SiO₂@PDMS coatings for self-cleaning and drag-reduction applications

Yu Wu,^a Yizhou Shen,^{*,a} Jie Tao,^{*,a,c} Zhaoru He,^a Yuehan Xie,^a Haifeng Chen,^b Mingming Jin^a and Wenqing Hou^a

^a College of Materials Science and Technology, Nanjing University of Aeronautics

and Astronautics, Nanjing 210016, P. R. China

^b Department of Materials Chemistry, Qiuzhen School, Huzhou University, 759, East

2nd Road, Huzhou 313000, P. R. China

^c Jiangsu Collaborative Innovation Center for Advanced Inorganic Function

Composites, Nanjing Tech University, Nanjing 210016, P. R. China

* Correspondence to taojie@nuaa.edu.cn (Prof. J. Tao) shenyizhou@nuaa.edu.cn (A/Prof. Y. Shen)

Figure S1. Schematic diagram of synthesizing superhydrophobic F-SiO₂@PDMS coatings.

Figure S2. High-resolution C 1s of raw SiO_2 nanoparticles. The peak located at 284.8 eV corresponds to the standard C element. Also, it has been confirmed that the peak at 283.0 eV originates from the contaminant in measurement environment.

Figure S3. SEM images of prepared coatings with different silica content of 0, 0.22%, 0.44%, 0.66%, 0.88% and 1.76%, respectively.

Figure S4. The surface roughness of prepared coatings with different silica content.

Figure S5. Schematic illustration of water droplet adhesion measurement system.

Figure S6. Schematic illustration of the man-made stretching setup used to characterize wettability of superhydrophobic $F-SiO_2@PDMS$ coatings after being stretched in the present study.

Video Captions

Video S1: Methylene blue-dyed water dropped on the treated SiO_2 particles and formed liquid marbles.

Video S2: Droplets can easily roll off the surface.

Video S3: A jet of water from syringe impacted the coatings and easily bounced off the surface without leaving a trace.

Video S4: The dust on superhydrophobic F-SiO₂@PDMS coatings can be easily taken away by continuous flow.

Video S5: The superhydrophobic coatings were repeatedly immersed in the dyed water, and they did not get dirty.

Video S6: Bare and coated "ship" were released simultaneously and moved to the finish line under tensile. It took less time for the coated one to reach the destination.

Video S7: The superhydrophobic coatings were stretched by 50% of its length and still sustained their water-repellent property.