Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

New Journal of Chemistry

Rare-earth phosphors based on spherical infinite coordination polymers

Guilherme Arroyos, Regina Célia Galvão Frem

São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, 14800-970, Brazil

Fig. S1. FEG-SEM image of **Tb-M2** synthesized with pH = 2.

Fig. S2. Powder XRD of **Tb-M2** (top) and simulated data (bottom) ($P2_1/c$, CCDC Deposition Number 614527).

Fig. S3. FEG-SEM images of **Tb-M5** synthesized with pH = 5.

Fig. S4. Proposed mechanism of the formation of the spherical particles for an analogous Zn-based ICP. Reproduced from Ref. 1 with permission from The Royal Society of Chemistry.

Fig. S5. FEG-SEM images of **Tb-MHT** synthesized with pH = 4.0 by hydrothermal technique, with 72 h at 150 °C and 36 h of cooling to room temperature.

Fig. S6. Powder X-ray diffraction pattern of **Tb-MHT** synthesized with pH = 4.0 by hydrothermal technique, 72 h at 150 °C and 36 h of cooling to room temperature.

Fig. S7. Powder X-ray diffraction pattern of Eu-M compound.

Fig. S8. Infrared spectra of the ligands and Tb-M.

3.5 nyrazoledicarboyylic	Malonic acid	Th-M	Assignment
acid	Maionic aciu	10-111	
-	_	3506-3073 w br	v(OH) v(NH) v(CH)
3202 s hr	_	-	$\nu(CH), \nu(CH), \nu(OH)$
3141 m	_	_	v(CH)
3108 w	_	_	v(CH)
3003 w			ν (eff)
	2080 m	_	v(OH)
	2)0) m	_	v(CH)
2910 W	- 2018 sh 2002 m	2008 114	v(CH)
-	2940 <i>sn</i> , 2902 <i>m</i>	1565 ws br	v(CII)
-	-	1305 vs, br	$v_{as}(COO)$
	-	1333 VS, DI	$v_{s}(COO)$
- 1690 sh 1674 ug	1097 VS	-	v(c=0), v(c=0)
1669 <i>sn</i> , 1674 <i>vs</i>	-	-	V(C-0)
1557 \$	-	-	$V_{s}(ring)$
1488 \$	-	-	o _{ip} (ring)
144 <i>2 S</i>	-	1444 W	v(ring)
-	1434 s	-	$\delta(CH_2), \delta(OH)$
1393 m	1394 s	-	$v(ring), \delta(OH), \delta(CO),$
1014			<u> </u>
1314 s	-	-	v(C-O)
-	1301 <i>s</i>	-	$\delta(OH), v(CO_2), v(CC)$
1265 s	-	-	$\delta_{op}(CH)$
-	1212 s	-	$\delta_{op}(CH_2)$
1206 vs		1202 w, br	$\nu_{s}(C=O)$
_	1166 vs	-	$\delta_{op}(CH_2)$
1014 s	-	1017 w	$\delta_{ip}(CH_2), \delta_{op}(CH_2),$
			v(ring)
993 s	-	-	$\delta_{ip}(ring)$
	916 vs	-	v(CC), v(C-O)
_	897 vs	-	$\delta_{ip}(OH)$
853 s	-	836 w	$\delta_{op}(CH)$
771 <i>s</i>	771 s	785 m	$\delta_{op}(CH), \delta_{ip}(C=O),$
			$\delta_{ip}(C-O), \delta_{ip}(C-C)$
746 <i>m</i>	-	-	$\delta_{op}(OH)$
-	649 vs	630 w	δ(CCO)
-	591 s	596 w, br	$\delta_{ip}(C=O), \delta(CCO)$
571 m	-	-	$\delta_{op}(ring)$
-	570 s	563 w, br	$\delta_{ip}(C=O), \delta(CCO)$
518 w	-	533 vw	$\delta_{op}(NH)$
496 w	-	_	δ(OCO)
_	448 vs	_	$\delta_{ip}(CCO)$
-	427 vs	-	$\delta_{ip}(CCO)$
			I I I I I I I I I I I I I I I I I I I

Table S1. Main IR vibrational absorption bands and assignments for free ligands and Tb-M.

v: stretching; v_s : symmetrical stretching; v_{as} : asymmetrical stretching; δ_{op} : out-of-plane deformation; δ_{ip} : in-plane deformation.

Fig. S9. TG/DTG curves of as-synthesized Tb-M (a) and after activation (b).

Fig. S10. XRD pattern of **Tb-M** residue after 800 °C treatment showing Tb₄O₇ characteristic peaks.

Fig. S11. Decay time curves of Tb-M.

Fig. S12. CIE chromaticity diagram for Eu-M (0.63, 0.37) and Dy-M (0.40, 0.42) samples.

Fig. S13. Infrared spectrum of Gd-M979.

Fig. S14. Powder X-ray diffraction pattern of Gd-M979.