Comparison of support synthesis method for TiO2 and the effect of surface

sulfates on its activity toward NH₃-SCR

Xuejun Zhang ^a, Yun Xing ^a, Zhongxian Song ^{b*}, Heng Zhao ^a, Min Zhao ^a, Jinggang

Zhao ^a, Zi'ang Ma ^a, Peipei Zhang ^c, Noritatsu Tsubaki^c

(^aCollege of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang 110142, People's Republic of China; ^bFaculty of Environmental and Municipal Engineering, Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, People's Republic of China; ^cDepartment of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan)

Corresponding Authors:

*Z. X. Song: email, songzhongxian@126.com, Tel., (+86)-375-2089031

1 XRD analysis

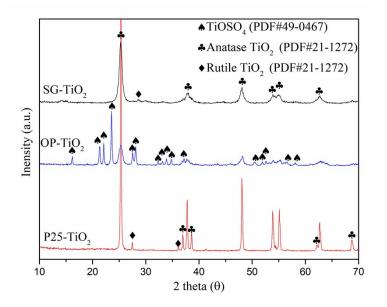
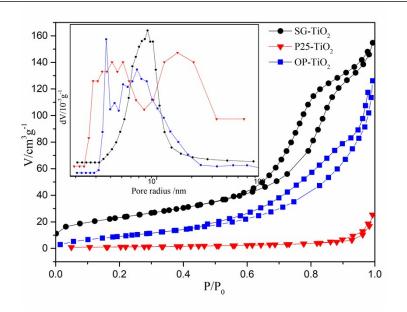


Fig. S1 XRD profiles of SG-TiO₂, P25-TiO₂ and OP-TiO₂ supports samples


The XRD profiles of SG-TiO₂, P25-TiO₂ and OP-TiO₂ supports were performed and the results were shown in Fig. S1. It was obviously that both rutile and anatase TiO₂ phase were dominant detected on P25-TiO₂ and SG-TiO₂, while the main phase of OP-TiO₂ was TiOSO₄ (PDF#49-0467). However, rutile TiO₂ was observed over IM-P25, which suggested that the sulphur treatment could contribute to the formation of anatase TiO₂.

2. Micro-structure analysis

Table S1 Specific surface area and total pore volume of the SG-TiO₂, P25-TiO₂ and OP-TiO₂ supports samples

Catalysts	BET surface area,	Total Pore volume,	Average Pore diameter,
	m ² g ⁻¹	cm ³ g ⁻¹	nm
SG-TiO ₂	84	0.240	9.1

Fig. S2. N₂ adsorption/desorption isotherms and pore size distributions of the SG-TiO₂, P25-TiO₂ and OP-TiO₂ supports samples

Fig. S2 exhibited the N₂ adsorption-desorption isotherms of the different TiO₂ supports. Each of the samples displayed a distorted type-IV isotherm, which was typical for mesoporous materials (2-50 nm). Compared with the TiO₂ supports and synthesis of CeO₂-TiO₂-H₂SO₄ catalysts, the BET surface areas of IM-SG and IM-OP were decreased from 84 m²/g to 49 m²/g, 58 m²/g to 24 m²/g, respectively. The results confirmed that the preparation of impregnation-catalysts blocked the pores of the TiO₂ supports, which could decrease the BET surface areas of the catalysts. Furthermore, the BET surface area of IM-P25 was 8 m²/g, which might be related to the generation of rutile TiO₂.