Electronic Supplementary Information

Enhancing formaldehyde oxidation on Ir catalysts by hydrogenated TiO₂ supports

Hang Cheong Chan, Ting Chen, Lifang Xie, Yijin Shu, and Qingsheng Gao*

Department of Chemistry, College of Chemistry and Materials Science, Jinan

University, No. 601 Huangpu Avenue West, 510632 Guangzhou, P. R. China

E-mail: tqsgao@jnu.edu.cn

Fig. S1 UV-vis DRS of H-TiO₂ and TiO₂.

Fig. S2 N_2 sorption isothermals of H-TiO₂ and TiO₂.

Table S1. The amount of SiO_2 in H-TiO₂ and TiO₂ determined by XRF measurement.

	SiO ₂ (wt%)	TiO_2 (wt%)
H-TiO ₂	4.1	92.6
TiO ₂	13.8	85.0

Fig. S3 FT-IR of H-TiO₂ and TiO₂ from 4000 to 3000 cm⁻¹.

Fig. S4 EDS profiles of (a) 0.9%Ir/TiO₂ and (b) 0.7%Ir/H-TiO₂.

Fig. S5 CO-DRIFTS of 0.7%Ir/H-TiO₂ and 0.9%Ir/TiO₂.

Fig. S6 CO-TPD profiles and the corresponding quantitative CO desorption from (a,b) Ir/H-TiO₂ and (c,d) Ir/TiO₂.

Fig. S7 (a) XRD pattern, and (b) Ti 2p, (c) O 1s, and (d) Ir 4f XPS profiles on 0.7%Ir/H-TiO₂ before and after reaction.

Fig. S8 (a) O 1s XPS profile NaOH-modified TiO_2 and bare TiO_2 , and (b) catalytic HCHO oxidation on Ir supported by NaOH-modified TiO_2 and bare TiO_2 .

Fig. S9 (a) Performance of HCHO oxidation at 30 $^{\circ}$ C, and (b) Pt 4f XPS profiles of 1.0%Pt/H-TiO₂ and 0.9%Pt/TiO₂.