Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

# **Supporting Information**

## Self-reversible Mechanochromism and Aggregation Induced Emission in Neutral Triarylmethanes and Their Application in Water Sensing

Thekke Thattariyil Divya<sup>a</sup>, Kalluruttimmal Ramshad<sup>a</sup>, Velluvakandi Chaluvalappil Saheer<sup>b</sup>, Lakshmi Chakkumkumarath<sup>a</sup>\*



Fig. S1 The absorption spectra of  $(5 \times 10^{-5} \text{ M})$  solution of a) PhMBD, b) PyMBD, c)PrMBD in different solvents.



**Fig. S2** The emission spectra of pyrene  $(2 \times 10^{-3} \text{ M})$  in different solvents.

| Solvent         | Absorbance    | Emission | Stokes shift  | Quantum |
|-----------------|---------------|----------|---------------|---------|
|                 | ( <b>nm</b> ) | (nm)     | ( <b>nm</b> ) | yield   |
| Toluene         | 298, 288      | 405      | 107           | 0.366   |
| Dichloromethane | 297, 252      | 437      | 185           | 0.478   |
| THF             | 298, 278      | 448      | 150           | 0.445   |
| Ethyl acetate   | 296,262       | 439      | 177           | 0.363   |
| Acetonitrile    | 296, 251,     | 502      | 251           | 0.29    |
|                 | 219           |          |               |         |
| DMF             | 297, 273      | 491      | 218           | 0.519   |
| DMSO            | 298, 270      | 513      | 243           | 0.611   |

Table S1: The spectral data of PhMBD in different solvents.

Table S2: The spectral data of **PyMBD** in different solvents.

| Solvent         | Absorbance    | Emission | Stokes shift  | Quantum |
|-----------------|---------------|----------|---------------|---------|
|                 | ( <b>nm</b> ) | (nm)     | ( <b>nm</b> ) | yield   |
| Toluene         | 351, 333,     | 432      | 81            | 0.097   |
|                 | 282           |          |               |         |
| Dichloromethane | 349, 332,     | 494      | 145           | 0.041   |
|                 | 278, 267      |          |               |         |
| THF             | 348, 332,     | 508      | 160           | 0.031   |
|                 | 277, 266      |          |               |         |
| Ethyl acetate   | 347, 330,     | 501      | 154           | 0.020   |
|                 | 276, 267      |          |               |         |
| Acetonitrile    | 347, 330,     | 580, 415 | 233           | 0.016   |
|                 | 276, 266      |          |               |         |
| DMF             | 349, 332,     | 583, 420 | 234           | 0.10    |
|                 | 277, 267      |          |               |         |
| DMSO            | 350, 334,     | 600, 430 | 250           | 0.087   |
|                 | 278, 268      |          |               |         |

| Solvent         | Absorbance    | Emission | Stokes shift  | Quantum |
|-----------------|---------------|----------|---------------|---------|
|                 | ( <b>nm</b> ) | (nm)     | ( <b>nm</b> ) | yield   |
| Toluene         | 448, 420,     | 473, 453 | 25            | 0.49    |
|                 | 395           |          |               |         |
| Dichloromethane | 446, 419,     | 475      | 29            | 0.148   |
|                 | 396           |          |               |         |
| THF             | 446, 418,     | 468      | 22            | 0.028   |
|                 | 396           |          |               |         |
| Ethyl acetate   | 444, 417,     | 468      | 24            | 0.024   |
|                 | 393           |          |               |         |
| Acetonitrile    | 443, 416,     | 466      | 23            | 0.006   |
|                 | 394           |          |               |         |
| DMF             | 447, 419,     | 471      | 24            | 0.014   |
|                 | 396           |          |               |         |
| DMSO            | 449, 421,     | 471      | 22            | 0.017   |
|                 | 397           |          |               |         |

 Table S3: The spectral data of PrMBD in different solvents.

Table S4: Comparison of solid and solution state properties of compounds

| Compound |                       | $\lambda_{ab.max}$ . | λ <sub>em.max</sub> | Stokes | ф <sub>f</sub> | ф <sub>аgg</sub> | $\alpha_{AIE}$ | CIE            |
|----------|-----------------------|----------------------|---------------------|--------|----------------|------------------|----------------|----------------|
|          | Physical              | (nm)                 | (nm)                | shift  |                |                  |                | Со –           |
|          | state                 |                      |                     | (nm)   |                |                  |                | ordinates(x,y) |
|          |                       |                      |                     |        |                |                  |                |                |
| PhMBD    | In CH <sub>3</sub> CN | 296, 251,            | 502                 | 251    | 0.305          | 0.3              | 0.98           | (0.210, 0.378) |
|          |                       | 219                  |                     |        |                |                  |                |                |
|          | Solid                 | 308                  | 424                 | 116    | 0.027          |                  |                | (0.184, 0.164) |
|          |                       |                      |                     |        |                |                  |                |                |
| PyMBD    | In CH <sub>3</sub> CN | 347, 330,            | 580                 | 233    | 0.016          | 0.29             | 18             | (0.432,0.458)  |
|          |                       | 276, 266             |                     |        |                |                  |                |                |
|          | Solid                 | 374, 312,            | 435                 | 61     | 0.08           |                  |                | (0.165, 0.216) |
|          |                       | 262                  |                     |        |                |                  |                |                |
| PrMBD    | In CH <sub>3</sub> CN | 443, 416,            | 466                 | 23     | 0.006          | 0.14             | 23             | (0.281, 0.389) |
|          |                       | 394                  |                     |        |                |                  |                |                |
|          | Solid                 | 397                  | 610                 | 213    | 0.011          |                  |                | (0.524, 0.385) |



Fig. S3 Optimized Structure of a) PhMBD b) PyMBD c) PrMBD in acetonitrile.

**Table S5:** Computed electronic transitions, excitation energies and oscillator strengths.

| Molecule | State | Transition            | Wave         | Excitation  | Oscillator |
|----------|-------|-----------------------|--------------|-------------|------------|
|          |       |                       | function     | Energy      | Strength   |
|          |       |                       | coefficients | (eV)        |            |
|          | 1     | 115 116               | 0.70250      | 0.0570 M    |            |
|          | 1     | $115 \rightarrow 116$ | 0.70358      | 2.8570 eV   | 0.0182     |
| PhMRD    |       |                       |              | 433.96 nm   |            |
| 1 monde  | 2     | $114 \rightarrow 116$ | 0 70487      | 3 1106 eV   |            |
|          | 2     | 114 /110              | 0.70407      | 308 58 nm   | 0.0017     |
|          |       |                       |              | 576.56 IIII |            |
|          | 3     | 115 →117              | -0.70249     | 366.71      | 0.0026     |
|          |       |                       |              |             |            |
|          |       |                       |              |             |            |
|          | 1     | 121 →122              | 0.70476      | 2.4970 eV   | 0.0020     |
|          | _     |                       |              | 496.54 nm   |            |
| PyMBD    | 2     | 120 →122              | 0.70476      | 2.8864 eV   | 0.0060     |
|          |       |                       |              | 429.55 nm   |            |
|          | 3     | 118 →123              | 0.15         | 3.3964 eV   | 0.4707     |
|          |       | 119 →122              | 0.69         | 365.04 nm   |            |
|          |       | $134 \rightarrow 135$ | -0.70254     | 2.1341 eV   | 0.0017     |
|          | 1     |                       |              | 580.97 nm   | 0.0017     |
| ΓΓΝΙΟΟ   |       | 122 125               | 0 61271      | 2 4990 aV   |            |
|          | 2     | $132 \rightarrow 133$ | -0. 013/1    | 2.4889 eV   | 0.0652     |
|          | 2     | $133 \rightarrow 135$ | -0.34567     | 498.14 nm   | 0.0052     |
|          |       | 155 / 155             |              |             |            |
|          |       | $132 \rightarrow 135$ | 0.34825      | 2.6025 eV   |            |
|          | 3     | 400 405               | 0 (10(0      | 476.40 nm   | 0.4440     |
|          |       | $133 \rightarrow 135$ | -0.61260     |             |            |
|          | 1     |                       | 1            | 1           |            |



**Fig.S4** The major electronic transitions based on oscillator strength of a) **PhMBD** b) **PyMBD** c) **PrMBD.** 

b)

a)



Fig.S5 The electron difference density isosurface between ground and excited states of a) PhMBD b) PyMBD c) PrMBD.



Fig. S6 The absorption of PhMBD, PyMBD & PrMBD in the presence of TFA.



Fig. S7 The emission spectra of PhMBD, PyMBD & PrMBD in the presence of TFA.



**Fig. S8** The absorption spectra of (5×10<sup>-5</sup> M) solution of a) **PhMBD**, b) **PyMBD**, c) **PrMBD** in acetonitrile containing different percentages of water.



Fig. S9 (a) The emission spectrum and (b) calibration curve of PhMBD ( $5 \times 10^{-5}$  M) in CH<sub>3</sub>CN-H<sub>2</sub>O mixtures with different water fractions.  $\lambda_{ex} = 300$  nm.



**Fig. S10** The calibration curve of  $5 \times 10^{-5}$  M (a) **PyMBD**  $\lambda_{ex} = 350$  nm. (b) **PrMBD**  $\lambda_{ex} = 380$  nm in CH<sub>3</sub>CN - H<sub>2</sub>O mixtures with different water fractions.



Fig. S11 DLS images of PhMBD (1:1  $H_2O/CH_3CN$ ) concentration (5×10<sup>-5</sup> M).



Fig. S12 DLS images of PyMBD (1:1  $H_2O/CH_3CN$ ) concentration (5×10<sup>-5</sup> M).



**Fig. S13** DLS images of **PrMBD** (1:1  $H_2O/CH_3CN$ ) concentration (5×10<sup>-5</sup> M).



**Fig. S14** The fluorescent microscopic images of a) **PhMBD** (*f*<sub>w</sub> 70%), b) **PyMBD** (*f*<sub>w</sub> 70%), c) **PrMBD** (*f*<sub>w</sub> 60%) in CH<sub>3</sub>CN-H<sub>2</sub>O mixtures, concentration (5×10<sup>-5</sup> M).



**Fig. S15** The absorption spectrum of (5×10<sup>-5</sup>M) solutions of a) **PhMBD** b) **PyMBD** c) **PrMBD** in methanol containing different percentages of glycerol.



Fig. S16 The PXRD spectra of a) PhMBD b) PyMBD before and after grinding.

| Pristine | Ground  | After 17 hr |
|----------|---------|-------------|
| 2 Theta  | 2 Theta | 2 Theta     |
| 6.9      | 6.77    | 6.86        |
| 8.88     | 8.57    | 8.61        |
| 9.8      | 12.25   | 9.62        |
| 10.54    | 13.26   | 10.46       |
| 11.29    | 15.67   | 11.02       |
| 11.99    | 16.59   | 12.30       |
| 12.38    | 13.30   |             |
| 13.44    | 19.09   | 14.75       |
| 14.18    | 19.84   | 15.28       |
| 14.57    | 20.28   | 15.67       |
| 15.72    | 20.97   | 16.68       |
| 16.33    | 22.42   | 17.60       |
| 16.77    | 25.18   | 19.13       |
| 17.65    | 25.93   | 19.88       |
| 18.78    | 27.77   | 20.36       |
| 19.22    |         | 21.11       |
| 21.02    |         | 21.50       |
| 21.50    |         | 22.47       |
| 21.8     |         | 23.34       |
| 22.60    |         | 25.23       |
| 23.34    |         | 25.97       |
| 24.05    |         | 26.85       |
| 24.49    |         | 27.86       |
| 25.32    |         | 28.39       |
| 26.02    |         | 28.60       |
|          |         | 29.53       |

**Table S6:** The  $2\theta$  values of the pristine, ground and aged sample



Fig.S17 The emission spectra of a) PhMBD b) PyMBD exposed to TFA and Et<sub>3</sub>N vapour.



**Fig. S18** a) The emission spectra and b) calibration curve and photographs of **PyMBD** ( $5 \times 10^{5}$  M in acetonitrile) in presence of different percentages of water in acetonitrile [I-pure solvent, II-with the addition of 20% water (when viewed under UV lamp of 365 nm)].



| Equation  | y = a + b*x |           |  |  |  |
|-----------|-------------|-----------|--|--|--|
| Weight    | No Weight   |           |  |  |  |
| Residual  | 114.49977   | 114.49977 |  |  |  |
| Pearson's | -0.96876    |           |  |  |  |
| Adj. R-Sq | 0.93291     |           |  |  |  |
|           |             | Standard  |  |  |  |
| В         | Intercept   | 1.62326   |  |  |  |
| В         | Slope       | 2.17366   |  |  |  |

**Fig. S19** Calibration curve of **PyMBD**  $(5 \times 10^{-5} \text{M})$  in lower concentration range, with error bars for calculating the DL and QL as a function of water content in acetonitrile.



| Equation  | y = a + b*x |          |
|-----------|-------------|----------|
| Weight    | No Weight   |          |
| Residual  | 24.96508    |          |
| Pearson's | -0.98475    |          |
| Adj. R-Sq | 0.96699     |          |
|           |             | Standard |
| В         | Intercept   | 0.75797  |
| В         | Slope       | 1.01497  |

**Fig. S20** Calibration curve of **PyMBD**  $(5 \times 10^{-5} \text{M})$  in lower concentration range, with error bars for calculating the DL and QL as a function of water content in dioxane.



Fig. S21 Calibration curve of PrMBD  $(5 \times 10^{-5} \text{M})$  in lower concentration range, with error bars for calculating the DL and QL as a function of water content in dioxane.







Fig.S23 The DSC curve of PyMBD.



Fig.S25 DTA, TG and DTG curves of PhMBD.







Fig.S27 DTA, TG and DTG curves of PrMBD.



Fig.S28 <sup>1</sup>HNMR of PhMBD (400MHz, CDCl<sub>3</sub>).



**Fig. S29**. <sup>13</sup>C NMR of **PhMBD** (100MHz, CDCl<sub>3</sub>).



Fig. S30. DEPT-135 of PhMBD (100MHz, CDCl<sub>3</sub>).



Fig.S31 <sup>1</sup>HNMR of PyMBD (400MHz, CDCl<sub>3</sub>).



Fig.S32 <sup>13</sup>C NMR of PyMBD (100MHz, CDCl<sub>3</sub>).







Fig.S34 <sup>1</sup>HNMR of PrMBD (500MHz, CDCl<sub>3</sub>).



Fig.S35<sup>13</sup>C NMR of **PrMBD** (125MHz, CDCl<sub>3</sub>).



Fig.S36 DEPT-135 of PrMBD (125MHz, CDCl<sub>3</sub>).

### **Elemental Composition Report**

#### Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

#### Monoisotopic Mass, Odd and Even Electron Ions

1 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)

Elements Used: C: 0-31 H: 0-31 N: 0-2

KMM-PH-BDA 08062018-02-KMM-PH-BDA 10 (0.252) AM (Cen,5, 80.00, Ar,5000.0,0.00,1.00); Sb (1,40.00 ); Sm (Mn, 1x0.00); Cm (3:19)



Fig.S37 Mass spectrum of PhMBD.

#### Page 1

TOF MS ES+



Fig.S38 Mass spectrum of PyMBD.

#### Elemental Composition Report

#### Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Odd and Even Electron Ions 1 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-37 H: 0-33 N: 0-2 KMM-PR-BDA 08062018-01-KMM-PR-BDA 2 (0.051) AM (Cen.5, 80.00, Ar,5000.0,0.00,1.00); Sb (1,40.00 ); Sm (Mn, 1x0.00); Cm (2:6)



Fig.S39 Mass spectrum of PrMBD.

#### Page 1