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M13-bacteriophage growth, purification and amplification process: 

M13wild was grown and purified following standard biochemical protocols described 

in literature.1-4 Briefly, one colony of E. coli XL-1 blue was grown in 3 ml of LB media to 

mid-log phase (E. coli XL-1 blue culture) and infected with 10 µL of M13wild. The culture 

was incubated at 37°C with shaking for 12 h, and then centrifuged to remove E. coli. The 

M13wild was collected by PEG/NaCl (20% PEG and 2.5 mol/L NaCl) precipitation and 

reconstituted in Tris-bufferred saline (10 mM). The typical yield was ~ 20 mg of M13wild per 

litter. The final concentration was determined spectrophotometrically using an extinction 

coefficient of 3.84 cm2/mg at 269 nm.3,5 

Attachment of cation binding peptides at the major coat protein (Gene VIII) of M13 is 

reported previously.6 Briefly, two primers were designed to insert 4E into the gene VIII 

protein: 5′-ATATATCTGCAGNKGAAGAGGAAGAGCCCGCAAAAGCGGCCTTTAA 

CTCCC-3′ (4E), and 5′-GGAAGCTGCAGCGAAAGACAGCATCGGAACGAGG-3′ 

(linearization primer). To collect M134E phages, the inverse polymerase chain reaction (PCR) 

cloning method was performed using the above mentioned primers (the linearization primer 

with M134E primer). The PCR product was purified then the amplified plasmid, and phage 

plagues were verified by DNA sequencing. Furthermore, we have amplified the M134E phage 

for our experiments, and the methods were same to the M13wild as mentioned above.3, 5 
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Figure. S1 (A-C) SPR absorption spectral changes and (A1-C1) plots of changes in the 

absorption intensity and wavelength observed for (A and A1) SSG–Ag NPs, (B and B1) 

SSG–Agwild NCBs, and (C and C1) SSG–Ag4E NCBs upon each addition of 10 μM of Hg(II) 

ions. 
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Figure. S2 (A) STEM-HAADF images and (B-D) STEM-EDX mapping analyses of AgHg-
amalgam crystals. 
 

 
Figure. S3 STEM-EDX point ID analysis of AgHg-amalgam crystals. 
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Figure. S4 XPS spectra obtained for the AgHg-amalgam crystals and their corresponding (A) 

Ag3d, (B) Hg4f, and (C) Hg5p regions of core-level spectra. 
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Figure S5. XRD analysis of (a) Bare ITO substrate, (b) SSG–Ag4E CGs, (c) AgHg-amalgam 

crystals. 
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Table. S1 Quantification of Hg(II) ions in different water samples by using SSG–Ag4E CGs 

and ICP-MS. 

                                                  Hg(II) Ions (µM)                           

                                       SSG–Ag4E NCBs                                     ICP-MS 

Samples Added 

(µM) 

Found 

(µM) 

Recovery 

(%) 

RSD 

(%) 

Found 

(µM) 

Recovery 

(%) 

RSD 

(%) 

Tab water 0 

25 

50 

0 

24.93 

50.36 

– 

99.73 

100.73 

– 

2.02 

2.06 

0 

24.57 

49.22 

– 

98.28 

98.44 

– 

0.74 

0.51 

Pond water 0 

25 

50 

0 

26.34 

52.85 

– 

105.36 

105.71 

– 

0.66 

1.79 

0 

28.10 

54.20 

– 

112.40 

108.4 

– 

1.76 

0.99 
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