Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting information

Imidazole-containing cyanostilbene-based molecules with aggregation-induced emission characteristics: photophysical and electroluminescent properties

Yujie Dong,^{a,b} Jingyu Qian,^c Yang Liu,^c Nianyong Zhu,^b Bin Xu,^c Cheuk-Lam Ho,^{*d} Wenjing Tian^{*c} and Wai-Yeung Wong^{*b,d}

^a State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
^b Institute of Molecular Functional Materials, Department of Chemistry and Institute of Advanced Materials, Hong Kong Baptist University, Hong Kong, P. R. China.
^c State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Qianjin street No.2699, Changchun 130012, China. E-mail: wjtian@jlu.edu.cn.
^d Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China. E-mail: cheuk-lam.ho@polyu.edu.hk; wai-yeung.wong@polyu.edu.hk

Fig. S1 Molecular structure and packing mode of PPIA in the crystal.

Table S1 Selected dihedral angle (deg) of the crystal structure of PPIA

Crystal	<i>θ</i> ₁₂ (°)	$ heta_{13}$ (°)	$ heta_{14}(^\circ)$	$ heta_{23}(^\circ)$	$ heta_{24}(^\circ)$	θ ₃₄ (°)
PPIA	52.0	78.9	77.5	84.7	73.8	12.6

Fig. S2 Normalized absorption spectra of TPIA and PPIA in different solvents.

Table S2 Absorption and emission maxima of TPIA and PPIA in different solvents

Solvent		Hexane	Toluene	Diethyl ether	Ethyl acetate	Acetonitrile	
TPIA	$\lambda_{abs}(nm)$	372	380	374	375	370	
	$\lambda_{em}(nm)$	494	544	586	603	628	
PPIA	$\lambda_{abs}(nm)$	362	363	361	360	360	
	$\lambda_{em}(nm)$	528	556	580	601	624	

Fig. S3 PL spectra of TPIA and PPIA in THF at room temperature and 77 K.

Fig. S4 Cyclic voltammograms of **TPIA** and **PPIA** in CH_2Cl_2 , measured with 0.1 M n-Bu₄NPF₆ as the supporting electrolyte at a scan rate of 100 mV s⁻¹.

Fig. S5 (a: **TPIA**, c: **PPIA**) External quantum efficiency with the luminance and EL spectrum (Inset) of the fabricated OLED device I. (b: **TPIA**, d: **PPIA**) Current efficiency-current density-power efficiency curves and current-voltage-luminance characteristic curves (Inset) of the fabricated OLED device I. Device I configuration: ITO/HATCN (5 nm)/NPB (40 nm)/emitting layer (20 nm)/TPBi (40 nm)/LiF/Al.

	PPIA		
CCDC	1862218		
empirical formula	$C_{72}H_{54}N_8O_2$		
formula wt	1063.23		
Т, К	173(2)		
crystal system	Triclinic		
space group	<i>P</i> -1		
a, Å	10.123(2)		
b, Å	11.857(2)		
<i>c</i> , Å	12.208(2)		
α , degree	107.99(2)		
β , degree	99.32(2)		
γ, degree	97.49(2)		
<i>V</i> ,Å3	1349.7(5)		
Ζ	1		
density, Mg/m ³	1.308		
M (Mo K α), mm ⁻¹	0.080		
θ range, degree	2.50-28.32		
no. of reflens collected	9082		
no. of unique reflens	6357		
R(int)	0.0153		
GOF	0.931		
$RI \ [I > 2\sigma(I)]$	0.0469		
$wR2 [I > 2\sigma(I)]$	0.1281		
R1 (all data)	0.0581		
wR2 (all data)	0.1400		

 Table S3: Crystal data and structure refinement results of PPIA

Fig. S6. ¹H NMR spectrum of compound CN-1.

Fig. S7. ¹³C NMR spectrum of compound CN-1.

Fig. S8. Mass spectrum of compound CN-1.

Fig. S9. ¹H NMR spectrum of compound CN-2.

Fig. S10. ¹³C NMR spectrum of compound CN-2.

Fig. S11. Mass spectrum of compound CN-2.

Fig. S12. ¹H NMR spectrum of compound TPIA.

Fig. S13. ¹³C NMR spectrum of compound TPIA.

Fig. S14. Mass spectrum of compound TPIA.

Fig. S16. ¹³C NMR spectrum of compound PPIA.

Fig. S17. Mass spectrum of compound PPIA.