1

Use of Rhodamine-allyl Schiff base by chemodosimetric process for total

Palladium estimation and application for live cell imaging

Anup Kumar Bhanja, Snehasis Mishra, Ketaki Kar, Kaushik Naskar, Suvendu Maity, Krishna

Das Saha, Chittaranjan Sinha*

Fig S1: Powder X-ray diffraction pattern of RD-2.

Fig.S2. FT-IR spectrum of RD-2 in KBr disc

Fig.S3. ¹HNMR spectrum of RD-2 in CDCl₃

Fig.S4. 13CNMR spectrum of RD-2 in CDCl₃

Fig.S5. Mass spectrum of RD-2

Fig.S6. Fluorescence intensity changes profiles of 100 μ M RD-2 in CH₃CN–water (HEPES

buffer, pH =7.4; v/v, 1/4) in presence of selected metal ions at excitation wavelength 505 nm. **Fig.S7.** The linear dynamic response of RD-2 for Pd^{2+} and the determination of the detection

limit (LOD) for Pd²⁺.

Fig.S8. Plausible mechanism of Pd²⁺ induced spirolactam ring opening and fluorescece emission change strategy of probe(our previous report).

Fig.S9. Mass spectrum of RD-2 with Pd²⁺.

Fig.S10. ¹HNMR spectrum (300MHz) of RD-2 in CD₃CN with Pd²⁺.

Fig.S11. FT-IR spectrum of RD-2 in KBr disc with Pd²⁺.

Fig.S12. ¹³C NMR spectrum of RD-2 in CD₃CN-CDCl₃ with Pd²⁺.

Fig.S13. Effect of pH on the fluorescence activity of RD and RD with Pd^{2+} in (CH₃CN/H₂0, $\frac{1}{4}$, v/v, HEPES buffer).

Table S1. Comparative information of different probes for detection of Pd²⁺ and their LOD and Reference.

Fig S1: Powder X-ray diffraction pattern of RD-2.

Fig. S2. FT-IR spectrum of RD-2 in KBr disc.

Fig. S3. ¹HNMR spectrum(300MHz) of RD-2 in CDCl₃.

Fig. S4. ¹³CNMR spectrum of RD-2 in CDCl₃

Fig. S5. Mass spectrum of RD-2.

Fig. S6. Fluorescence intensity changes profiles of 100 μ M RD-2 in CH₃CN–water (HEPES buffer, pH =7.4; v/v, 1/4) in presence of selected metal ions at excitation wavelength 505 nm.

Fig. S7. The linear dynamic response of RD-2 for Pd²⁺ and the determination of the detection limit (LOD) for Pd²⁺.

Fig. S8. Plausible mechanism of Pd²⁺ induced spirolactam ring opening and fluorescece emission change strategy of probe(our previous report).

Fig. S9. Mass spectrum of RD-2 with Pd²⁺.

Fig. S10. ¹HNMR spectrum (300MHz) of RD-2 in CD₃CN with Pd^{2+} .

Fig. S11. FT-IR spectrum of RD-2 in KBr disc with Pd²⁺.

Fig. S12. ¹³C NMR spectrum of RD-2 in CD₃CN-CDCl₃ with Pd²⁺.

Fig. S13. Effect of pH on the fluorescence activity of RD-2 and RD-2 with Pd^{2+} in (CH₃CN/H₂0, ¹/₄, v/v, HEPES buffer).

Table S1. Comparative information of different probes for detection of Pd^{2+} and their LOD and Reference

Sl.No.	Fluorophore	LOD, nM	Ref.
1.	OH N HO CN	100	33
2.		55	34
3.		1650	35

9.		185	41
10.		190	42
11.	N-N N-N HN O NH	95	This Work