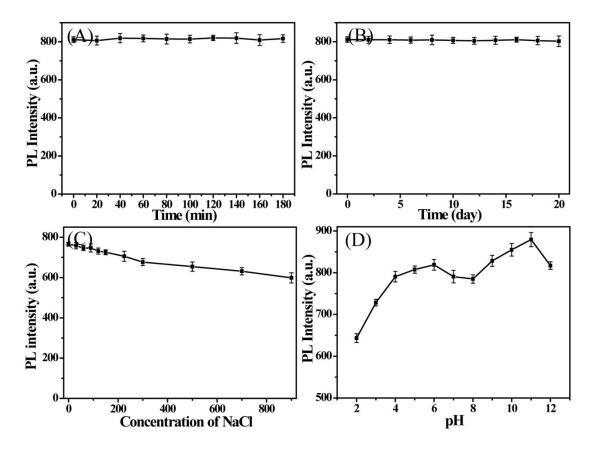
Electronic Supplementary Information

S, N-Co-doped Carbon Nanoparticles with High Quantum Yield for

metal ions detection, IMP logic gates and bioimaging Applications

Jinping Song, Qi Ma *, Sufang Zhang, Huijun Liu, Yong Guo, Feng Feng *


College of Chemistry and Environmental Engineering, and Institute of Applied Chemistry, Shanxi Datong University, Datong, Shanxi, 037009, China *Corresponding authors: maqihx@163.com (Q. Ma), feng-feng64@263.com (F. Feng)

	Reaction temperature/ $^{\circ}C$	Reaction time/ h	QYs (%) in water	QYs (%) in ethanol
1	200	1.0	33.59 %	5.02 %
2	200	1.5	53.35 %	42.72 %
3	200	2.0	57.35 %	43.99 %
4	200	2.5	67.02%	44.32 %
5	200	3.0	62.27 %	41.01 %
6	180	2.5	41.54 %	40.67 %
7	220	2.5	69.04 %	43.84 %
8	240	2.5	65.32 %	41.56 %

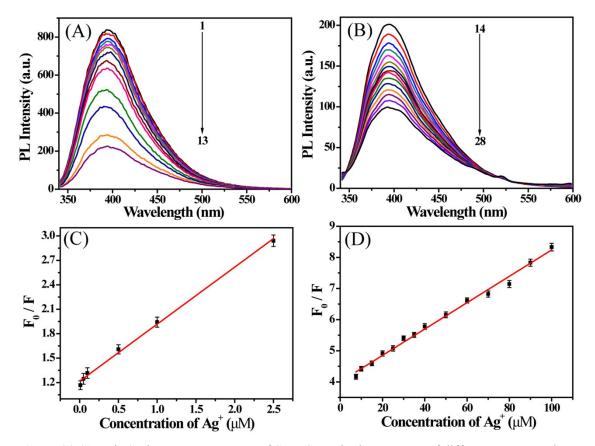
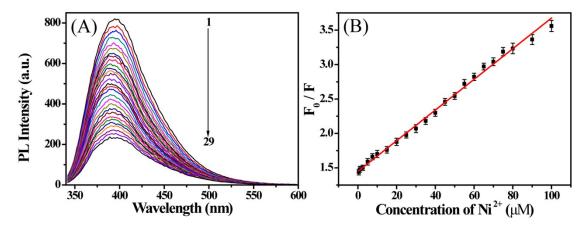
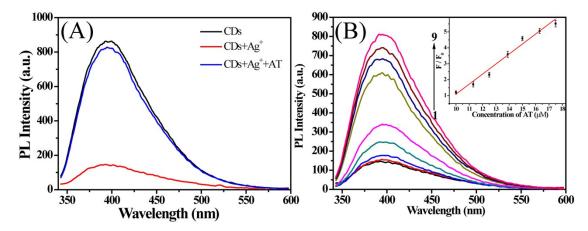
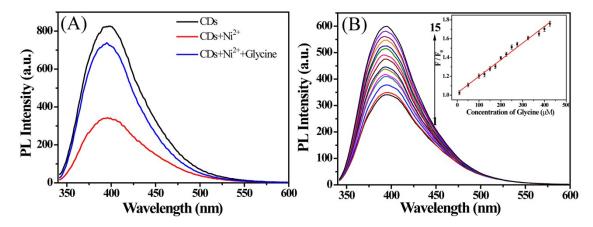

 Table S1. Quantum yield of S,N-CNPs prepared under different synthetic conditions.

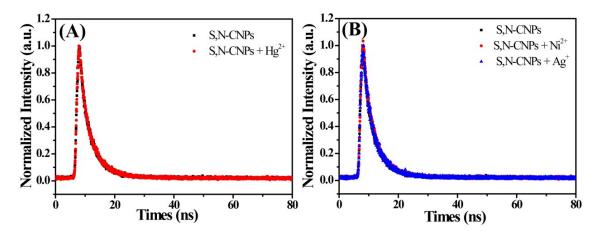
Table S2. Stern–Volmer quenching constants at different temperatures

	рН	T (K)	K _{sv} (L mol ⁻¹)	R
Hg ²⁺	6	298	6.765×10 ⁴	0.9951
	6	310	5.408×10 ⁴	0.9978
	6	318	4.024×10^{4}	0.9784
Ag^+	11	298	8.859×10 ⁴	0.9903
	11	310	8.548×10 ⁴	0.9924
	11	318	7.752×10^{4}	0.9931
Ni ²⁺	11	298	1.367×10^{4}	0.9971
	11	310	0.846×10 ⁴	0.9977
	11	318	0.631×10 ⁴	0.9923

Figure S1 Stability performance of S, N-CNPs. Effect of UV lamp irradiation (A), storage time (B), ionic strength (C) and pH (D) on the fluorescence intensity of S, N-CNPs.

Figure S2 (A and B) Fluorescence spectra of S, N-CNPs in the presence of different concentration of Ag⁺ (1: 0 M; $2 \sim 13$: 1.0×10^{-11} M $\sim 5.0 \times 10^{-6}$ M; $14 \sim 28$: 7.5×10^{-6} M $\sim 1.0 \times 10^{-4}$ M) in pH 11 BR buffer solution. (C) The linear plot between F₀/F and the concentration of Ag⁺ in the range of $1.0 \times 10^{-8} \sim 2.5 \times 10^{-6}$ M. (D) The linear plot between F₀/F and the concentration of Ag⁺ in the range of $7.5 \times 10^{-6} \sim 1.0 \times 10^{-4}$ M.


Figure S3 (A) Fluorescence spectra of S,N-CNPs in the presence of different concentration of Ni²⁺ (1: 0 M; 2 ~ 29: $1.0 \times 10^{-12} \text{ M} \sim 1.0 \times 10^{-4} \text{ M}$) in pH 11 BR buffer solution. (B) The linear plot between F₀/F and the concentration of Ni²⁺.

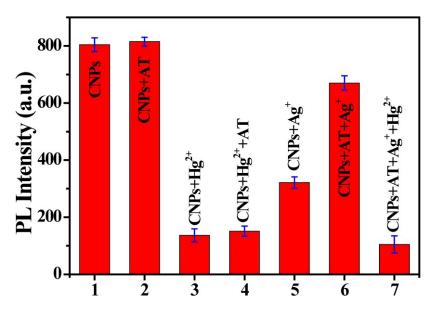

Figure S4 (A) Fluorescence spectra of S,N-CNPs (black curve), S,N-CNPs+0.1 mM Ag⁺ (red curve) and S,N-CNPs+ 0.1 mM Ag⁺ + 20 μ M AT (blue curve), respectively. (B) Fluorescence spectra of S,N-CNPs containing 0.1 mM Ag⁺ in the absence and presence of different concentration of AT (5.0 × 10⁻⁶ ~ 2.0 × 10⁻⁵ M). (Inset) Linear plot between F/F₀ and the concentration of AT. All above experiments were carried out in pH 11 BR buffer solution.

Figure S5 (A) Fluorescence spectra of S,N-CNPs (black curve), S,N-CNPs+0.1 mM Ni²⁺ (red curve) and S,N-CNPs+ 50 μ M Ni²⁺ 1 mM glycine (blue curve), respectively. (B) Fluorescence spectra of S,N-CNPs containing 50 μ M Ni²⁺ in the absence and presence of different concentration of Ni²⁺ (1: 0 M; 2 ~ 15: 1.0 × 10⁻⁵ ~ 4.25 × 10⁻⁴ M). (B) Linear plot between F₀/F and the concentration of Ni²⁺ in the range of 1.0 × 10⁻⁵ ~ 4.25 × 10⁻⁴ M. All above experiments were carried out in pH 11 BR buffer solution.

Figure S6 (A) Lifetime decay of S,N-CNPs, and S,N-CNPs+Hg²⁺ in pH 6 BR buffer solution. (B) Lifetime decay of S,N-CNPs, S,N-CNPs+Ni²⁺ and S,N-CNPs+Ag⁺ in pH 11 BR buffer solution.

Figure S7 Fluorescence histogram of (1) S,N-CNPs, (2) S,N-CNPs + 0.1 mM AT, (3) S,N-CNPs + 0.1 mM Hg²⁺, (4) S,N-CNPs + 0.1 mM Hg²⁺ + 0.1 mM AT, (5) S,N-CNPs + 50 μ M Ag⁺, (6) S,N-CNPs + 50 μ M Ag⁺ + 0.1 mM AT and (7) S,N-CNPs + 50 μ M Ag⁺ + 0.1 mM AT + 0.1 mM Hg²⁺ in pH 6 buffer solution, respectively.

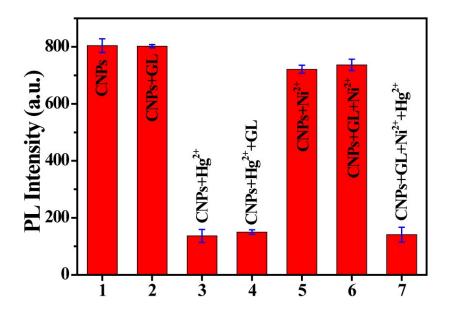


Figure S8 Fluorescence histogram of (1) S,N-CNPs, (2) S,N-CNPs + 0.1 mM GL, (3) S,N-CNPs + 0.1 mM Hg²⁺, (4) S,N-CNPs + 0.1 mM Hg²⁺ + 0.1 mM GL, (5) S,N-CNPs + 0.1 mM Ni²⁺, (6) S,N-CNPs + 0.1 mM Ni²⁺ + 0.1 mM GL and (7) S,N-CNPs + 0.1 mM Ni²⁺ + 0.1 mM GL + 0.1 mM Hg²⁺ in pH 6 buffer solution, respectively.

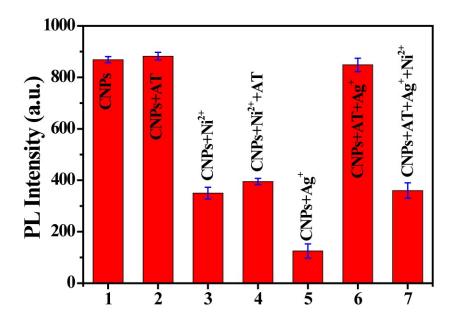


Figure S9 Fluorescence histogram of (1) S,N-CNPs, (2) S,N-CNPs + 20 μ M AT, (3) S,N-CNPs + 50 μ M Ni²⁺, (4) S,N-CNPs + 50 μ M Ni²⁺ + 20 μ M AT, (5) S,N-CNPs + 0.1 mM Ag⁺, (6) S,N-CNPs + 0.1 mM Ag⁺ + 20 μ M AT and (7) S,N-CNPs + 0.1 mM Ag⁺ + 20 μ M AT + 50 μ M Ni²⁺ in pH 11 buffer solution, respectively.

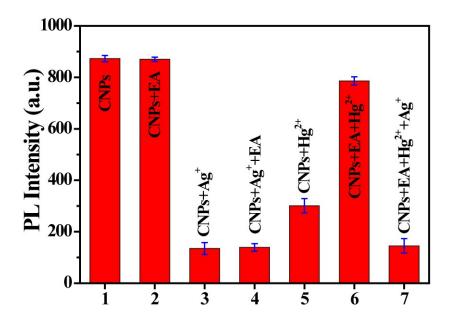
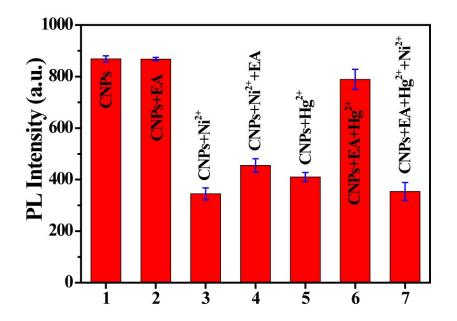



Figure S10 Fluorescence histogram of (1) S,N-CNPs, (2) S,N-CNPs + 10 mM EA, (3) S,N-CNPs + 0.1 mM Ag⁺, (4) S,N-CNPs + 0.1 mM Ag⁺ +10 mM EA, (5) S,N-CNPs + 0.1 mM Hg²⁺, (6) S,N-CNPs + 0.1 mM Hg²⁺ + 10 mM EA and (7) S,N-CNPs + 0.1 mM Hg²⁺ +10 mM EA + 0.1 mM Ag⁺ in pH 11 buffer solution, respectively.

Figure S11 Fluorescence histogram of (1) S,N-CNPs, (2) S,N-CNPs + 0.2 mM EA, (3) S,N-CNPs + 50 μ M Ni²⁺, (4) S,N-CNPs + 50 μ M Ni²⁺ + 0.2 mM EA, (5) S,N-CNPs + 50 μ M Hg²⁺, (6) S,N-CNPs + 50 μ M Hg²⁺ + 0.2 mM EA and (7) S,N-CNPs + 50 μ M Hg²⁺ + 0.2 mM EA + 50 μ M Ni²⁺ in pH 11 buffer solution, respectively.

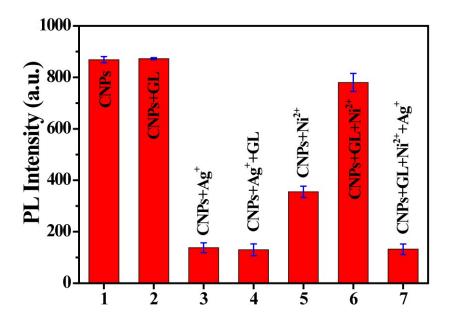


Figure S12 Fluorescence histogram of (1) S,N-CNPs, (2) S,N-CNPs + 0.5 mM GL, (3) S,N-CNPs + 0.1 mM Ag⁺, (4) S,N-CNPs + 0.1 mM Ag⁺ + 0.5 mM GL, (5) S,N-CNPs + 50 μ M Ni²⁺, (6) S,N-CNPs + 50 μ M Ni²⁺ + 0.5 mM GL and (7) S,N-CNPs + 50 μ M Ni²⁺ + 0.5 mM GL + 0.1 mM Ag⁺ in pH 11 buffer solution, respectively.

Input 1	Input 2			Output
Ag +	AT	EA	GL	F
1	0	0	0	0
1	1	0	0	1
1	0	1	0	0
1	0	0	1	0

Figure S13 Truth table for IMP logic gate operation (it always keeps Ag^+ as input 1 and changes

input 2).

Input 1			Input 2	Output
Ag +	Hg ²⁺	Ni ²⁺	AT	F
1	0	0	1	1
0	1	0	1	0
0	0	1	1	0

Figure S14 Truth table for IMP logic gate operation (it always keeps AT as input 2 and changes

input 1).

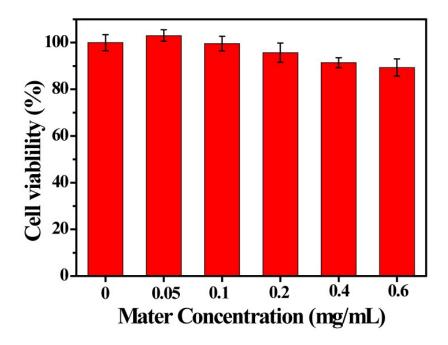


Figure S15 Cell cytotoxic effect of S,N-CNPs on Hela cells.