Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting information

Green synthesis of porous Au-N_x-TiO₂ nanospheres for solar light induced photocatalytic degradation of diazo, triazo dyes and their eco-toxic effects

N. Pugazhenthiran,^{1,2,*} R.V. Mangalaraja,^{1,3,**} P. Sathishkumar,⁴ S. Murugesan,² T. Muneeswaran,⁵ T. Pandiyarajan,¹ S. Naveenraj,¹ D. Contreras,^{6,7} S. Anandan⁸

¹Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering,

Faculty of Engineering, University of Concepcion, Concepcion 4070409, Chile.

²School of Chemistry, Madurai Kamaraj University, Madurai-625021, India

³Technological Development Unit, University of Concepcion, Coronel Industrial Park, Coronel-4191996, Chile.

⁴Department of Physical Chemistry, Aksum University, Axum-1010, Ethiopia.

⁵Department of Marine & Coastal Studies, School of Energy, Environment and Natural Resources,

Madurai Kamraj University, Madurai, 625021, Tamil Nadu, India.

⁶Department of Analytical and Inorganic Chemistry, Faculty of Chemical Sciences, ⁷Center for Biotechnology, University of Concepcion, Concepcion 4070409, Chile.

⁸Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.

Corresponding Authors

*The author (N.P): npugazhmku@gmail.com; Tel.: +56-412203664; Fax: +56-41-2203391.

**The author (R.V.M): mangal@udec.cl; Tel.: +56-412207389; Fax: +56-41-2203391.

Fig. S1. The molecular structures for the model pollutants (diazo (RR120) and triazo dyes (DB71)).

Fig. S2. SEM images of porous $TiO_2 NSPs$ (a,b) and N_x - $TiO_2 NSPs$ (c,d).

Fig. S3. EDAX spectra of porous $TiO_2 NSPs$ (a) and N_x - $TiO_2 NSPs$ (b).

Fig. S4. TEM images (a), HRTEM image (b), EDAX spectrum (c) of porous Au-TiO₂ NSPs. Inset (c): Corresponding SAED pattern.

Fig. S5. XPS survey spectra of prepared photocatalysts.

Fig. S6. UV-visible spectra of RR120 (a), DB71 (b) at different irradiation periods in the presence of porous Au-N_x-TiO₂ NSPs. [Dyes] = 4×10^{-5} M and [Au-N_x-TiO₂ NSPs] = 0.2 g L⁻¹. Plot of (C_t/C₀) vs. time for the photocatalytic degradation of RR120 (c) and DB71 (d) at various concentration of porous Au-N_x-TiO₂ NSPs [Dye] = 4×10^{-5} M. Inset: corresponding rate constant plot. Error bars are the standard deviations of triplicate experiments.

Fig. S7. PL spectra of 2-hydroxy terephthalic acid (standard) at various concentrations (a), fluorescence calibration curves as a function of 2-hydroxy terephthalic acid concentration (b,c), PL spectra of terephthalic acid at various irradiation times in the presence of porous Au-N_x-TiO₂ NSPs (d). [Catalysts] = 0.2 g L^{-1} ; [TA] = $5 \times 10^{-4} \text{ M}$.

Table S8. Summary of the results obtained for the amount of photocatalytic degradation of azo dyes and formation of HO[•] radical in the presence of various catalysts. (*The reaction parameters are identical in the dye degradation and HO[•] radical quantification*)

Irradiation	Catalyst (0.2 g L^{-1})	Amount of HO• radical formation (10 ⁻⁵ M)	Amount of degradation (10 ⁻⁵ M)	
			RR120	DB71
Direct Solar light	TiO ₂ (Degussa P25)	0.33 ± 0.04	1.80 ± 0.05	2.40 ± 0.02
	Porous TiO ₂ NSPs	0.47 ± 0.03	1.95 ± 0.05	2.50 ± 0.01
	Porous N _x -TiO ₂ NSPs	0.89 ± 0.05	2.79 ± 0.13	2.76 ± 0.08
	Porous Au-TiO ₂ NSPs	1.21 ± 0.03	3.36 ± 0.09	3.44 ± 0.04
	Porous Au-N _x -TiO ₂ NSPs	1.79 ± 0.05	$\textbf{3.90} \pm \textbf{0.08}$	$\textbf{3.94} \pm \textbf{0.02}$
	TiO ₂ (Degussa P25)	0.05 ± 0.01	0.40 ± 0.03	0.46 ± 0.01
Solar	Porous TiO ₂ NSPs	0.07 ± 0.01	0.44 ± 0.02	0.48 ± 0.02
(visible) light	Porous N _x -TiO ₂ NSPs	0.44 ± 0.02	1.04 ± 0.06	1.38 ± 0.04
$(\lambda > 395 \text{ nm})$	Porous Au-TiO ₂ NSPs	0.66 ± 0.02	1.30 ± 0.03	1.70 ± 0.06
	Porous Au-N _x -TiO ₂ NSPs	1.32 ± 0.01	3.32 ± 0.05	3.52 ± 0.02

S9: The principle involved in the photocatalytic degradation is the formation of HO[•] radicals by the utilization of the photocatalytically generated excitons. In this context, the photocatalytically generated HO[•] radicals in the presence of Au-N_x-TiO₂ NSPs on the direct solar light irradiation is identified and quantified through the photoluminescence (PL) technique. Terephthalic acid (TA) was used as the probe molecule and a change in the PL intensity of the photocatalytically formed 2-hydroxyterephthalic acid is directly proportional to the amount of the HO[•] produced during the photocatalytic reaction. The qualitative identification of the HO[•] radicals during the photocatalytic degradation reaction has been reported elsewhere ¹⁻⁴. It is important to quantify the photocatalytically generated HO[•] radicals. The experiments are carried out carefully to make a calibration curve using 2-hydroxyterephthalic acid as shown in Fig. S7a-c. The linear regression ($R^2 = 0.9998$) of the calibration curve clearly indicated that the PL intensity of the 2hydroxy terephthalic acid is increased with respect to its concentration upto 0.25×10^{-5} M (Fig. **S7b**) but the linear regression ($R^2 = 0.9936$) slightly deviates at high concentration of 2-hydroxy terephthalic acid (Fig. S7c) which may be caused by 2-hydroxy terephthalic acid absorption and/or fluorescence quenching ⁵. Fig. S7d reveals that there is no remarkable change in the PL intensity ($\lambda_{max} = 425$ nm) of aqueous TA in the presence of the catalyst under dark as well as light irradiation in the absence of the porous Au-N_x-TiO₂ NSPs. Whereas, the PL intensity of TA is increased in the presence of both solar light irradiation and porous Au-Nx-TiO₂ NSPs in the photocatalytic system due to the formation of 2-hydroxy terephthalic acid through the reaction between TA and the photocatalytically generated hydroxyl radicals (HO[•]).

Fig. S10. Histograms showing the percentage degradation of dyes in the presence of Au-N_x-TiO₂ NSPs under direct solar light irradiation. The experiments carried out in the both Milli-Q and tap water and concentrations are maintained as follows: [Catalyst] = 0.2 g L⁻¹; [dye] = 4×10^{-5} M.

Fig. S11. Histograms showing the comparison of the photocatalytic degradation rate constant (a, b) and mineralization (c,d) of RR120 and DB71 in the presence of oxidants with and without porous Au-N_x-TiO₂ NSPs under direct solar light irradiation. Inset (a,b): maximized area of corresponding plots. The experiments carried out in the both Milli-Q and tap water and concentrations are maintained as follows: [Catalyst] = 0.2 g L⁻¹; [dye] = 4 × 10⁻⁵ M and [Oxidants] = 2.5×10^{-4} M.

Fig. S12. Photocatalytic degradation of DB71using recycled porous Au-N_x-TiO₂ NSPs (a). Initial concentrations: [Catalyst] = 0.2 g L⁻¹; [dye] = 4×10^{-5} M. DRS of porous Au-N_x-TiO₂ NSPs before and recycled (b).

References

- K.-i. Ishibashi, A. Fujishima, T. Watanabe and K. Hashimoto, Electrochemistry Communications, 2000, 2, 207-210.
- B. Ahmmad, Y. Kusumoto and M. S. Islam, Advanced Powder Technology, 2010, 21, 292-297.
- N. Pugazhenthiran, S. Murugesan and S. Anandan, Journal of Hazardous Materials, 2013, 263, Part 2, 541-549.
- 4. N. Pugazhenthiran, S. Murugesan, P. Sathishkumar and S. Anandan, Chemical Engineering Journal, 2014, 241, 401-409.
- 5. K. R. Millington and L. J. Kirschenbaum, Coloration Technology, 2002, 118, 6-14.