Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Simple preparation of carbon-bimetal oxide nanospinels for high-performance

bifunctional oxygen electrocatalysts

K. Malaie, *a C. Jeyabharathi, b H. Wulff, c M. R. Ganjali, a F. Soavi, d and F. Scholzb

a Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Enghelab St.,

1417614411, Tehran, Iran

^bInstitute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany

^cInstitute of Physics, University of Greifswald, Felix-Hausdorff-Str. 6, 17489, Greifswald, Germany

^dDepartment of Chemistry "Giacomo Ciamician", Alma Mater Studiorum- Università di Bologna, Via Selmi 2, 40126, Bologna, Italy

*Corresponding author. E-mail address: K.malaie@ut.ac.ir

Fig. S1. Temperature profile of the reactor solution recorded by a pyrometer connected to a computer

Fig. S2. TEM images of C-CoFe oxide (a) and C-NiFe oxide (b). Highlighted regions show carbon

Fig. S3. SAED images of CoFe-oxide (a) and NiFe-oxide (b). They show two rings for C-CoFe oxide and one ring for C-NiFe oxide, confirming the presence of crystalline Co/Fe and Ni/Fe magnetite phases.

Fig. S4. Energy-dispersive X-ray analysis of C-CoFe oxide

Fig. S5. Tafel plots obtained from the LSVs at 5 mV s^{-1} for the electrocatalysts.

Fig. S6. Koutechy-Levich plots obtained at different potentials for C-Co oxide (a), C-NiFe oxide (b), and C-Ni oxide mixed with 80% Vulcan XC72 carbon.

	n ₁ (0.45 V)	n ₂ (0.5 V)	n ₃ (0.55 V)	n ₄ (0.6 V)
C-CoFe oxide	4.04	3.90	3.84	3.81
C-Co oxide	4.17	4.11	4.08	4.05
C-NiFe oxide	3.66	3.18	2.84	2.65
C-Ni oxide	2.92	2.81	2.72	2.65

Table S1. Calculated electron transfer number (n) based on Koutecky

 Levich plots at different potentials for ORR on the electrocatalysts

Table S2. Calculated k_f at two different potentials, and the kinetic parameters of α and k^0 for the ORR on C-CoFe oxide and C-Co oxide

	<i>k_f at 0.65 V</i>	<i>k_f at 0.6 V</i>	α	k^0 (cm s ⁻¹)
	$(cm \ s^{-1})$	$(cm \ s^{-1})$		n (em s)
C-CoFe oxide	1.93×10^{-2}	2.89×10^{-2}	0.205	1.74×10^{-4}
C-Co oxide	2.3×10^{-2}	4.48×10^{-2}	0.33	1.27×10^{-5}