A Rh(III)-Catalyzed Cascade C–H Functionalization/Cyclization Reaction of Salicylaldehydes with Diazomalonates for the Synthesis

of 4-Hydroxycoumarin Derivatives

Guo-Dong Xu^a, Zhi-Zhen Huang^{a,*}

^aDepartment of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China

Electronic Supplementary Information

Contents

1.	Op	S2								
2.	$^{1}\mathrm{H}$	NMR	and	¹³ C	NMR	Spectra	of	4-Hydroxycoumarin	Derivatives	3
									S3	

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[M] (2.5 r Acid (2.0 solvent, 60	nol%) equiv) °C, 24 h	
Entry	[M]	Acid	Solvent	Yield (%) ^b
1	[Cp*RhCl ₂] ₂	AcOH	DCE	43
2	[Cp*Rh(MeCN) ₂](SbF ₆) ₂	AcOH	DCE	0
3	$RhCl_3 \cdot 3H_2O$	AcOH	DCE	0
4	[Cp*RhCl ₂] ₂ /AgSbF ₆ ^c	AcOH	DCE	24
5	[Rh(COD) ₂ Cl] ₂	AcOH	DCE	0
6	RhCl(PPh) ₃	AcOH	DCE	0
7	[Cp*IrCl ₂] ₂	AcOH DCE		0
8	$[Ru(p-cymene) Cl_2]_2$	AcOH	DCE	0
9	$Pd(OAc)_2$	AcOH	DCE	0
10	PdCl ₂	AcOH	DCE	0
11	[Cp*RhCl ₂] ₂	НСООН	DCE	0
12	[Cp*RhCl ₂] ₂	PivOH	DCE	40
13	[Cp*RhCl ₂] ₂	TFA	DCE	0
14	[Cp*RhCl ₂] ₂	<i>p</i> -TsOH	DCE	0
15	[Cp*RhCl ₂] ₂	AcOH	dioxane	0
16	[Cp*RhCl ₂] ₂	AcOH	EtOH	0
17	[Cp*RhCl ₂] ₂	AcOH	MeCN	0
18	[Cp*RhCl ₂] ₂	AcOH	DMF	0
19	[Cp*RhCl ₂] ₂	AcOH	toluene	30
20	[Cp*RhCl ₂] ₂	AcOH	THF	0
21^d	[Cp*RhCl ₂] ₂	AcOH	DCE	21
22^e	[Cp*RhCl ₂] ₂	AcOH	DCE	79
23 ^f	[Cp*RhCl ₂] ₂	AcOH	DCE	55
24 ^g	[Cp*RhCl ₂] ₂	AcOH	DCE	trace

1. Optimization of the Reaction Conditions

^aReaction conditions: **1a** (0.10 mmol), **2a** (0.12 mmol), [M] (2.5 mol%), acid (2.0 equiv), solvent (2.0 mL), 60 °C, for 24 h. ^bIsolated yields. ^cAgSbF₆(5.0 mol%). ^d50 °C. ^e70 °C. ^f80 °C. ^g40 °C.

2. ¹H NMR and ¹³C NMR Spectra of 4-Hydroxycoumarin Derivatives 3

¹³C NMR Spectrum of Ethyl 4-Hydroxy-2-oxo-2H-chromene-3-carboxylate 3aa

¹H NMR Spectrum of Ethyl 6-Chloro-4-Hydroxy-2-oxo-2H-chromene-3-carbo -xylate **3ba**

¹³C NMR Spectrum of Ethyl 6-Chloro-4-Hydroxy-2-oxo-2H-chromene-3-carbo -xylate **3ba**

¹H NMR Spectrum of Ethyl 6-Bromo-4-Hydroxy-2-oxo-2H-chromene-3-carbo -xylate **3ca**

¹³C NMR Spectrum of Ethyl 6-Bromo-4-Hydroxy-2-oxo-2H-chromene-3-carbo -xylate **3ca**

¹H NMR Spectrum of Ethyl 4-Hydroxy-6-methyl-2-oxo-2H-chromene-3-carbo -xylate **3da**

¹³C NMR Spectrum of Ethyl 4-Hydroxy-6-methyl-2-oxo-2H-chromene-3-carbo -xylate **3da**

¹H NMR Spectrum of Ethyl 4-Hydroxy-6-methoxy-2-oxo-2H-chromene-3carboxylate **3ea**

¹³C NMR Spectrum of Ethyl 4-Hydroxy-6-methoxy-2-oxo-2H-chromene-3carboxylate **3ea**

¹H NMR Spectrum of Ethyl 7-Chloro-4-Hydroxy-2-oxo-2H-chromene-3-carbo -xylate **3fa**

¹³C NMR Spectrum of Ethyl 7-Chloro-4-Hydroxy-2-oxo-2H-chromene-3-carbo -xylate **3fa**

¹H NMR Spectrum of Ethyl 7-Bromo-4-Hydroxy-2-oxo-2H-chromene-3-carbo -xylate **3ga**

¹³C NMR Spectrum of Ethyl 7-Bromo-4-Hydroxy-2-oxo-2H-chromene-3-carbo -xylate **3ga**

¹H NMR Spectrum of Ethyl 4-Hydroxy-7-methyl-2-oxo-2H-chromene-3-carbo -xylate **3ha**

¹³C NMR Spectrum of Ethyl 4-Hydroxy-7-methyl-2-oxo-2H-chromene-3-carbo -xylate **3ha**

¹H NMR Spectrum of Ethyl 4-Hydroxy-7-methoxy-2-oxo-2H-chromene-3-carboxylate **3ia**

¹³C NMR Spectrum of Ethyl 4-Hydroxy-7-methoxy-2-oxo-2H-chromene-3-carboxylate **3ia**

¹H NMR Spectrum of Ethyl 8-Fluoro-4-Hydroxy-2-oxo-2H-chromene-3-carbo -xylate **3ja**

¹³C NMR Spectrum of Ethyl 8-Fluoro-4-Hydroxy-2-oxo-2H-chromene-3-carbo -xylate **3ja**

¹H NMR Spectrum of Ethyl 8-Chloro-4-Hydroxy-2-oxo-2H-chromene-3-carbo -xylate **3ka**

¹³C NMR Spectrum of Ethyl 8-Chloro-4-Hydroxy-2-oxo-2H-chromene-3-carbo -xylate 3ka

¹H NMR Spectrum of Ethyl 5-chloro-4-Hydroxy-2-oxo-2H-chromene-3-carbo -xylate **3la**

¹³C NMR Spectrum of Ethyl 5-Chloro-4-Hydroxy-2-oxo-2H-chromene-3-carbo -xylate **3la**

¹H NMR Spectrum of Ethyl 8-Bromo-6-chloro-4-Hydroxy-2-oxo-2Hchromene-3-carboxylate **3ma**

¹³C NMR Spectrum of Ethyl 8-Bromo-6-chloro-4-Hydroxy-2-oxo-2H-chromene-3-carboxylate **3ma**

¹H NMR of Methyl 4-Hydroxy-2-oxo-2H-chromene-3-carboxylate **3ab**

¹³C NMR of Methyl 4-Hydroxy-2-oxo-2H-chromene-3-carboxylate **3ab**

¹H NMR Spectrum of Isopropyl 4-Hydroxy-2-oxo-2H-chromene-3-carboxylate **3ac**

¹³C NMR Spectrum of Isopropyl 4-Hydroxy-2-oxo-2H-chromene-3-carbo xylate **3ac**

¹H NMR Spectrum of Benzyl 4-Hydroxy-2-oxo-2H-chromene-3-carboxylate **3ad**

¹³C NMR Spectrum of Benzyl 4-Hydroxy-2-oxo-2H-chromene-3-carboxylate 3ad