Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Crystal Engineering with Isosteric Triether and Triamine Linked Aromatic Tri-Carboxylic Acids: Iso-structurality and Synthons interplay in their Co-crystals and Salts with Bis(pyridyl) Derivatives

Debarati Das,^a Sandipan Roy^a and Kumar Biradha*^a

Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India. E-mail: kbiradha@chem.iitkgp.ernet.in

Contents

IR spectra

1)

2)	XRPD patterns	
3)	pKa of triacids and bipyridyl bases and Δ pKa values of the complexes	Table S1
4)	Comparison of C-O-C and Interplanar Angles of H3tcpb and its Complexes	Table S2
5)	C-N-C and Interplanar Angles of H ₃ btatb in its Complexes	Table S3

6) ORTEP diagrams of all the structures

Figure S6: IR spectra of 6

Figure S8: IR spectra of 8

Figure S9: IR spectra of 9

Figure S10: IR spectra of 10

Figure S11: XRPD spectra of 3

Figure S12: XRPD spectra of 5

Figure S13: XRPD spectra of 6

Figure S14: XRPD spectra of 7

Figure S15: XRPD spectra of 8

Figure S16: XRPD spectra of 9

Figure S17: XRPD spectra of 10

Organic acids			Bipy bases	pKa		Complexes	$\Delta pK_a = pK_a(NH^+)$	Complexes obtained	
	pK _a 1	pK _a 2	pK _a 3	04303	pK _a 1	pK _a 2			obuined
H ₃ tcpb	3.82	4.30	4.78	bpe	4.99	5.59	3	1.17	salt
H ₃ btatb	4.17	4.65	5.13						
							5	0.82	salt
				bpea	5.38	5.98	4	1.56	salt
							6	1.21	cocrystal
				bpys	3.99	4.60	7	0.17	cocrystal
				bpyms	4.38	5.01	8	0.21	cocrystal
				bpy	4.44	5.25	9	0.27	cocrystal
				bpp	5.42	6.02	10	1.25	cocrystal

Table S1: The pKa of H_3 tcpb, H_3 btatb and N-heterocyclic bases and Δ pKa values of the complexes

Table S2: Comparison of C-O-C and Interplanar Angles of H₃tcpb and its Complexes

	1	3	4	7
C-O-C(Å)	119.33°, 117.53°, 121.25°; 116.10°, 116.85°, 125.15°	118.21°, 120.36°, 121.00°	116.27°, 118.58°, 120.09°	120.24°, 119.07°, 119.77°
Interplannar angles(°)*	62.67°, 69.88°, 81.53°; 74.11°, 77.46°, 56.87°	62.57°, 56.85°, 68.37°	66.76°, 64.29°, 80.01°	76.50°, 64.13°, 71.13°

Table S3:	Comparison	of C-N-C and	l Interplanar	Angles o	of H ₃ btab	and its	Complexes
			1		•		1

	2	5	6	8	9	10
C-N-C(Å)	124.67°, 129.38°, 129.87°; 125.93°, 126.17°, 126.41°	124.92°, 127.87°, 128.56°	124.86°, 126.04°, 128.38°	127.27°, 128.13°, 132.18°	126.36°, 126.45°, 126.61°	123.95°, 127.28°, 131.87°
Interplannar angles(°)	47.12°, 44.12°, 49.24°; 37.85°, 47.26°, 33.81°	48.94°, 53.05°, 45.89°	46.03°, 52.80°, 46.47°	44.47°, 42.47°, 22.56°	42.62°, 43.02°, 64.57°	45.70°, 51.13°, 27.45°

ORTEP diagrams of all the structures

(c)

4

\

(h)

7

Figure S18. Illustrations of ORTEP diagrams of structures: (a) H_3 tcpb and (b) H_3 btatb; (c)-(j) complexes 3 to 10.