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Fig. S1 Powder X-ray diffraction patterns of 1 and 1A (activated product of 1). 
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Fig. S2 TGA curve of 1 measured in air atmosphere. 
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Fig. S3 IR spectra of H3L ligand and 1. 
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Fig. S4 The UV-vis absorption spectra of free H3L ligand and 1A at room temperature. 
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Fig. S5 Solid-state excitation spectra of H3L ligand and 1A at room temperature. 
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Fig. S6 The powder X-ray diffractions of 1A after sensing organic solvents (a) and nitro 

explosives (b). 

 

 

 

 

 

 



S11 

 

 

Fig. S7 The powder X-ray diffractions of 1A after sensing cations (a), anions (b) and pH (c) 

in aqueous solution. 
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Fig. S8 (a) Luminescence spectra of 1A treated with different solvents. (b) The Stern–

       (SV) quenching curve for 1A in aqueous solutions of different concentrations of 

acetone. 
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Fig. S9 Relation of luminescence intensity against acetone added into 1A suspension and 

their linear fitting curve for the estimation of LOD. 

D t ction Li it = 3σ/k 

= (3 × 8.1379)/ 346.795 

= 0.0704 vol% 

Multiple number of luminescence spectra (n = 10) were recorded for the blank sample of 

1A susp nsion. Sa p   standa d d viation σ fo  th  blank probe without the addition of 

acetone was calculated to be 8.1379. 
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Fig. S10 Stern–       plot for the luminescence intensities of 1A in aqueous solutions of 

different concentrations of acetone. 
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Fig. S11 Cyclic response of 1A for detecting acetone (luminescence intensity at 616 nm). 
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Fig. S12 The absorption spectra of different organic solvents and the excitation spectrum of 

1A. 
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Fig. S13 (a) Luminescence spectra of 1A in water treated with different metal ions (1 × 10
-2

 

mol L
-1

). (b) The luminescence intensities of 1A at 616 nm upon the addition of different 

metal ions followed by Fe
3+

 ions. The blue bars represent the intensities in different metal 

ion aqueous solutions, the red bars represent the intensities in the mixed solutions of Fe
3+

 

and other metal ions.  
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Fig. S14 The SV quenching curve for 1A in aqueous solutions of different concentrations 

of Fe
3+

. 
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Fig. S15 Relation of luminescence intensity against Fe
3+

 added into 1A suspension and 

their linear fitting curve for the estimation of LOD. 

D t ction Li it = 3σ/k 

= (3 × 8.1379)/ 2.7994× 10
7
 L mol

-1
 

= 0.87 μ o  L
-1  
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Fig. S16 Stern–       plot for the luminescence intensities of 1A in aqueous solutions of 

different concentrations of Fe
3+

. 
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Fig. S17 Cyclic response of 1A for detecting Fe
3+ 

(luminescence intensity at 616 nm). 
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Fig. S18 The absorption spectra of various cations and the excitation spectrum of 1A. 
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Fig. S19 (a) Luminescence spectra of 1A in aqueous solutions containing different 

concentrations of Cr2O7
2-

. (b) The SV quenching curve for 1A in aqueous solutions of 

different concentrations of Cr2O7
2-

. 
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Fig. S20 Relation of luminescence intensity against Cr2O7
2-

 added into 1A suspension and 

their linear fitting curve for the estimation of LOD. 

Detection Li it = 3σ/k 

= (3 × 8.1379) / 1.9562 × 10
7
 L mol

-1
 

= 1.25 μ o  L
-1 
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Fig. S21 Stern–       plot for the luminescence intensities of 1A in aqueous solutions of 

different concentrations of Cr2O7
2-

. 
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Fig. S22 Cyclic response of 1A for detecting Cr2O7
2- 

(luminescence intensity at 616 nm). 
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Fig. S23 The absorption spectra of various anions and the excitation spectrum of 1A. 
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Fig. S24 (a) The luminescence intensities of 1A at 616 nm upon the addition of different 

nitro explosives followed by 4-NP. The green bars represent the intensities in different 

nitro explosive aqueous solutions, the yellow bars represent the intensities in the mixed 

solutions of 4-NP and other nitro explosives. (b) The SV quenching curve for 1A in 

aqueous solutions of different concentrations of 4-NP. 
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Fig. S25 Relation of luminescence intensity against 4-NP added into 1A suspension and 

their linear fitting curve for the estimation of LOD. 

Detection Limit = 3σ/k 

= (3 × 8.1379) / 2.6414 × 10
7
 L mol

-1
 

= 0.92 μ o  L
-1 

 



S30 

 

 

Fig. S26 Stern–       plot for the luminescence intensities of 1A in aqueous solutions of 

different concentrations of 4-NP. 
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Fig. S27 Cyclic response of 1A for detecting 4-NP ( luminescence intensity at 616 nm). 
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Fig. S28 The absorption spectra of different nitro explosives and the excitation spectrum of 

1A. 
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Fig. S29 The powder X-ray diffraction patterns of 1A after cyclic sensing acetone, Fe
3+

, 

Cr2O7
2-

 and 4-NP in aqueous solutions. 

 

 

 

 

 

 

 



S34 

 

 

Fig. S30 Luminescence decay profiles for 1A (a), acetone@1A (b), Fe
3+

@1A (c), Cr2O7
2-

@1A (d) and 4-NP@1A (e) recorded at room temperature. The 
5
D0 decay curve of 1A with 

emission was monitored at 614 nm (λex = 328 nm). The red line is the best fitting to the data 

using a double exponential function, giving the value of τ1 = 0.597 ms and τ2 = 0.171 ms. 

The 
5
D0 decay curve of acetone@1A with emission was monitored at 614 nm (λex = 328 

nm), τ1 = 0.142 ms and τ2 = 0.522 ms. The 
5
D0 decay curve of Fe

3+
@1A with emission was 

monitored at 614 nm (λex = 328 nm), τ1 = 0.535 ms and τ2 = 0.198 ms. The 
5
D0 decay curve 

of Cr2O7
2-

@1A with emission was monitored at 614 nm (λex = 328 nm), τ1 = 0.496 ms and 
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τ2 = 0.148 ms. The 
5
D0 decay curve of 4-NP@1A

 
with emission was monitored at 614 nm 

(λex = 328 nm), τ1 = 0.122 ms and τ2 = 0.509 ms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



S36 

 

 

Fig. S31 SEM image of 1A after grinding. 
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Fig. S32 Variation of luminescence intensity of 1A with immersion time in analyte solution 

of acetone, Fe(NO3)3 (5 × 10
-2

 mol L
-1

), K2Cr2O7
2-

 (1 × 10
-2

 mol L
-1

) and 4-NP (1 × 10
-3

 mol 

L
-1

), respectively. 
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Table S1. Luminescence lifetimes of 1A, acetone@1A, Fe
3+

@1A, Cr2O7
2-

@1A and 4-

NP@1A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compounds luminescence lifetimes   

(τEu3+)  

1A τ1 = 0.597 ms τ2 = 0.171 ms 

acetone@1A τ1 = 0.142 ms τ2 = 0.522 ms 

Fe
3+

@1A τ1 = 0.535 ms τ2 = 0.198 ms 

Cr2O7
2-

@1A τ1 = 0.496 ms τ2 = 0.148 ms 

4-NP@1A τ1 = 0.122 ms τ2 = 0.509 ms 
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Table S2. Crystal data and structure refinement for 1 

           1 

Formula C16H14O9.5Eu 

Fw (g mol
-1

) 528 

Crystal system Tetragonal 

Space group I41/a 

a (Å) 21.534(3) 

c (Å) 15.908(3) 

V (Å
3
) 7377(2) 

Z 16 

DCalc (g cm
-3

) 1.758 

μ (mm
-1

) 3.444 

F (000) 3696 

 range () 3.11 - 27.47 

Limiting indices 

-25 ≤ h ≤ 27 

-27 ≤ k ≤ 27 

-20 ≤   ≤ 20 

Refl.Collected / unique 32891 / 4211 

Rint 0.0412 

Data / restraints / parameters 4211 / 0 / 226 

GOF 1.074 

R1 [I > 2σ(I)] 0.0611 

wR2[I > 2σ(I)] 0.1910 

R1 (all data) 0.0657 
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wR2 (all data) 0.1927 

Largest diff.peak and hole(e Å
-3

) 7.109 and -0.762 

CCDC No. 1845244 
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Table S3. Selected bond lengths [Å] and angles [°] for 1. 

Eu(1)-O(8)#1 2.323(8) Eu(1)-O(2)                   2.461(10) 

Eu(1)-O(6)#2 2.322(7) O(3)-Eu(1)#5                   2.359(7)  

Eu(1)-O(7)#3                    2.324(7) O(5)-Eu(1)#6                             2.331(7) 

Eu(1)-O(5)#4                   2.331(7) O(6)-Eu(1)#7            2.322(7) 

Eu(1)-O(1)                    2.347(6) O(7)-Eu(1)#8             2.324(7) 

Eu(1)-O(3)#5                  2.359(7) O(8)-Eu(1)#9             2.323(8) 

O(8)#1-Eu(1)-O(6)#2               91.4(3) O(8)#1-Eu(1)-O(7)#3            71.8(3) 

O(6)#2-Eu(1)-O(7)#3              91.8(3) O(8)#1-Eu(1)-O(5)#4           71.7(3) 

O(6)#2-Eu(1)-O(5)#4          98.9(3) O(7)#3-Eu(1)-O(5)#4         142.1(3) 

O(8)#1-Eu(1)-O(1)         105.4(3) O(6)#2-Eu(1)-O(1)         162.6(3) 

O(7)#3-Eu(1)-O(1)          89.4(3) O(5)#4-Eu(1)-O(1)             90.6(3) 

O(8)#1-Eu(1)-O(3)#5 147.3(3) O(6)#2-Eu(1)-O(3)#5 87.9(3) 

O(7)#3-Eu(1)-O(3)#5            140.9(3) O(5)#4-Eu(1)-O(3)#5 76.2(3) 

O(1)-Eu(1)-O(3)#5 80.3(3) O(8)#1-Eu(1)-O(2) 140.5(4) 

O(6)#2-Eu(1)-O(2) 84.4(4) O(7)#3-Eu(1)-O(2)           69.1(4) 

O(5)#4-Eu(1)-O(2) 147.8(4) O(1)-Eu(1)-O(2) 79.8(4) 

O(3)#5-Eu(1)-O(2) 71.9(4) C(3)-O(1)-Eu(1) 122.3(6) 

C(1)-O(3)-Eu(1)#5 141.6(7) C(3)-O(5)-Eu(1)#6 165.1(7) 

C(12)-O(6)-Eu(1)#7            131.9(7) C(1)-O(7)-Eu(1)#8         158.7(7) 

C(12)-O(8)-Eu(1)#9        163.9(8)   

Symmetry transformations used to generate equivalent atoms:  

#1 y-3/4, -x+5/4, z-3/4; #2 x, y, z-1; #3 -y+3/4, x+3/4, -z+3/4; #4 –y+5/4, x+3/4, z-1/4; #5 -

x+1/2, -y+3/2, -z+1/2; #6 y-3/4, -x+5/4, z+1/4; #7 x, y, z+1; #8 y-3/4, -x+3/4, -z+3/4; #9 –

y+5/4, x+3/4, z+3/4. 
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Table S4. The comparison of KSV between 1A and other reported luminescent sensors for 

the detection of acetone. 

MOFs KSV  

Detection limits 

(vol%) 

Reference 

[Eu(L)(H2O)]·2.5H2O 0.7019 0.0704  This work 

[Eu(BTB)(H2O)2·solvent]n 42.6 0.3  22 

[Cd(Tipb)(pta)0.5(H2O)- 

(NO3)]·(DMF)x(H2O)y 

- 0.084  [1] 

[Cd(Tipb)(mta)]·(DMF)x(H2O)y - 0.075 
 

[1]
 

Cd3(L)(H2O)2(DMF)2·5DMF - 0.1 
 

[2]
 

Cd3(L)(dib)·3H2O·5DMA - 0.1 
 

[2]
 

Eu(BTC)(H2O)·1.5H2O - 0.3 
 

[3] 

Tb(BTC)(H2O)6 - 0.3  [4] 
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Table S5. The comparison of KSV between 1A and other reported luminescent sensors for 

the detection of Fe
3+ 

ions. 

MOFs KSV (L mol
-1

) 

Detection limits 

(µmol L
-1

) 

Reference 

[Eu(L)(H2O)]·2.5H2O 6.607 × 10
4
 0.87 This work 

[Zn(H2bptc)(2,2′-bipy)(H2O)]·3H2O 2.581 × 10
4
 9.5 [5] 

[Zn2(bptc)(H2O)]·(4,4′-bipy)0.5 2.826 × 10
4
 8.5 [5] 

{[Eu2L1.5(H2O)2EtOH]·DMF}n 2.94 × 10
3
 10

 
[6]

 

EuL3 4.1 × 10
3
 

- 
[7]

 

534-MOF-Tb 5.51 × 10
3
 

- 
[8]

 

Pb3O2L 7.80 × 10
3
 7.85

 
4a 

{[Cd(L)-(BPDC)]·2H2O}n 3.64 × 10
4
 2.21 [9] 

{[Cd(L)(SDBA)(H2O)]·0.5H2O}n 3.59 × 10
4
 7.14 [9] 
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Table S6. The comparison of KSV between 1A and other reported luminescent sensors for 

the detection of Cr2O7
2- 

ions. 

MOFs KSV (L mol
-1

) 

Detection limits 

(µmol L
-1

) 

Reference 

[Eu(L)(H2O)]·2.5H2O 5.18 × 10
4
 1.25 This work 

{[Tb(TATAB)(H2O)2]·NMP·H2O}n 1.11 × 10
4
 5 41 

[Eu2(tpbpc)4·CO3·4H2O]·DMF·solvent 1.04 × 10
4
 3.64 3a 

{[Eu2L1.5(H2O)2EtOH]·DMF}n 1.526 × 10
3
 10

 
[6]

 

Eu
3+

@MIL-121 4.34 ×10
3
 - [10] 

534-MOF-Tb 1.37 × 10
4
 140

 
[8]

 

[Zn2(TPOM)(NH2-BDC)2]·4H2O 7.59 × 10
3
 3.9

 
[11] 

{[Cd(L)-(BPDC)]·2H2O}n 6.4 × 10
3
 37.6 [9] 

{[Cd(L)(SDBA)(H2O)]·0.5H2O}n 4.96 × 10
3
 48.6 [9] 
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Table S7. The comparison of KSV between 1A and other reported luminescent sensors for 

the detection of 4-NP. 

MOFs KSV (L mol
-1

) 

Detection limits 

(µmol L
-1

) 

Reference 

[Eu(L)(H2O)]·2.5H2O 7.513 × 10
4
 0.92 This work 

Pb3O2L 3.31 × 10
3
 2.16

 
4a 

Zn-MOF-1 1.25 × 10
4
 3.74 [12] 

[Zn2(TPOM)(NH2-BDC)2]·4H2O 2.17 × 10
4
 3.5

 
[11]

 

[Gd6(L)3(HL)2(H2O)10]·18H2O·x(solv

ent) 

8.4 × 10
3
 12 [13] 

[Eu6(L)3(HL)2- 

(H2O)10]·10H2O·x(solvent) 

- 1.7
 

[14]
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