Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

New Journal of Chemistry

Supporting Information

Multi-responsive luminescent sensor based on three dimensional lanthanide metal-

organic framework

Yufang Tao,^a Ping Zhang,^a Junning Liu,^b Xiaodong Chen,^a Xiuli Guo,^a Haoqing Jin,^a Juan

Chai,^a Li Wang*^a and Yong Fan*^a

Table of Contents

Fig. S1 Powder X-ray diffraction patterns of 1 and 1A (activated product of 1).	S5
Fig. S2 TGA curve of 1 measured in air atmosphere.	S 6
Fig. S3 IR spectra of H_3L ligand and 1 .	S 7
Fig. S4 The UV-vis absorption spectra of free H_3L ligand and 1A at room	S 8
temperature.	
Fig. S5 Solid-state excitation spectra of H_3L ligand and 1A at room temperature.	S9
Fig. S6 PXRD patterns for 1A after sensing organic solvents and nitro explosives	S10
in aqueous solution.	
Fig. S7 PXRD patterns for 1A after sensing pH, cations and anions in aqueous	S11
solution.	
Fig. S8 (a) Luminescence spectra of 1A treated with different solvents. (b) The	S12
Stern-Völmer (SV) quenching curve for 1A in aqueous solutions of different	
concentrations of acetone.	
Fig. S9 The fitting curve of the luminescence intensities of 1A at different	S13
concentrations of acetone.	
Fig. S10 Stern–Völmer plot for the luminescence intensities of 1A in aqueous	S14
solutions of different concentrations of acetone.	
Fig. S11 Cyclic response of 1A for detecting acetone (luminescence intensity at	S15
616 nm).	
Fig. S12 The absorption spectra of different organic solvents and the excitation	S16
spectrum of 1A .	
Fig. 13 (a) Luminescence spectra of 1A in water treated with different metal ions	S17
$(1 \times 10^{-2} \text{ mol } \text{L}^{-1})$. (b) The luminescence intensities of 1A at 616 nm upon the	
addition of different metal ions followed by Fe ³⁺ ions. The blue bars represent	
the intensities in different metal ion aqueous solutions, the red bars represent the	
intensities in the mixed solutions of Fe^{3+} and other metal ions.	
Fig. S14 The SV quenching curve for 1A in aqueous solutions of different	S18
concentrations of Fe ³⁺ .	
Fig. S15 The fitting curve of the luminescence intensities of 1A at different	S19
concentrations of Fe ³⁺ .	
Fig. S16 Stern–Völmer plot for the luminescence intensities of 1A in aqueous	S20
solutions of different concentrations of Fe ³⁺ .	

Fig. S17 Cyclic response of **1A** for detecting Fe³⁺ (luminescence intensity at 616 S21 nm).

Fig. S18 The absorption spectra of various cations and the excitation spectrum of S221A.

Fig. S19 (a) Luminescence spectra of 1A in aqueous solutions containing S23 different concentrations of $\text{Cr}_2\text{O}_7^{2-}$. (b) The SV quenching curve for 1A in aqueous solutions of different concentrations of $\text{Cr}_2\text{O}_7^{2-}$.

Fig. S20 The fitting curve of the luminescence intensities of 1A at different S24 concentrations of $Cr_2O_7^{2-}$.

Fig. S21 Stern–Völmer plot for the luminescence intensities of 1A in aqueous S25 solutions of different concentrations of $Cr_2O_7^{2^2}$.

Fig. S22 Cyclic response of **1A** for detecting $Cr_2O_7^{2-}$ (luminescence intensity at S26 616 nm).

Fig. S23 The absorption spectra of various anions and the excitation spectrum of S271A.

Fig. S24 (a) The luminescence intensities of **1A** at 616 nm upon the addition of S28 different nitro explosives followed by 4-NP. The green bars represent the intensities in different nitro explosive aqueous solutions, the yellow bars represent the intensities in the mixed solutions of 4-NP and other nitro explosives. (b) The SV quenching curve for **1A** in aqueous solutions of different concentrations of 4-NP.

Fig. S25 The fitting curve of the luminescence intensities of **1A** at different S29 concentrations of 4-NP.

Fig. S26 Stern–Völmer plot for the luminescence intensities of **1A** in aqueous S30 solutions of different concentrations of 4-NP.

Fig. S27 Cyclic response of **1A** for detecting 4-NP (luminescence intensity at S31 616 nm).

Fig. S28 The absorption spectra of different nitro explosives and the excitation S32 spectrum of **1A**.

Fig. S29 The powder X-ray diffractions of **1A** after cyclic sensing acetone, Fe^{3+} , S33 $\text{Cr}_2\text{O}_7^{2-}$ and 4-NP in aqueous solutions.

Fig. S30 Luminescence decay profiles for **1A**, acetone@**1A**, Fe^{3+} @**1A**, $\text{Cr}_2\text{O}_7^{2-}$ S34 @**1A** and 4-NP@**1A** recorded at room temperature.

Fig. S31 SEM image of 1A after grinding.	S36
Fig. S32 Variation of luminescence intensity of 1A with immersion time in	S37
various analyte solutions.	
Table S1 Luminescence lifetimes of 1A, acetone@1A, Fe^{3+} @1A, $Cr_2O_7^{2-}$ @1A	S38
and 4-NP@ 1A .	
Table S2 Crystal data and structure refinement for 1.	S39
Table S3 Selected bond lengths [Å] and angles [] for 1.	S41
Table S4 The comparison of K_{SV} between 1A and other reported luminescent	S42
sensors for the detection of acetone.	
Table S5 The comparison of K_{SV} between 1A and other reported luminescent	S43
sensors for the detection of Fe^{3+} .	
Table S6 The comparison of K_{SV} between 1A and other reported luminescent	S44
sensors for the detection of $Cr_2O_7^{2-}$.	
Table S7 The comparison of K_{SV} between 1A and other reported luminescent	S45
sensors for the detection of 4-NP.	

Fig. S1 Powder X-ray diffraction patterns of 1 and 1A (activated product of 1).

Fig. S2 TGA curve of 1 measured in air atmosphere.

Fig. S3 IR spectra of H_3L ligand and 1.

Fig. S4 The UV-vis absorption spectra of free H_3L ligand and 1A at room temperature.

Fig. S5 Solid-state excitation spectra of H_3L ligand and 1A at room temperature.

Fig. S6 The powder X-ray diffractions of 1A after sensing organic solvents (a) and nitro explosives (b).

Fig. S7 The powder X-ray diffractions of **1A** after sensing cations (a), anions (b) and pH (c) in aqueous solution.

Fig. S8 (a) Luminescence spectra of 1A treated with different solvents. (b) The Stern-Völmer (SV) quenching curve for 1A in aqueous solutions of different concentrations of acetone.

Fig. S9 Relation of luminescence intensity against acetone added into **1A** suspension and their linear fitting curve for the estimation of LOD.

= (3 × 8.1379)/ 346.795

$$= 0.0704 \text{ vol\%}$$

Multiple number of luminescence spectra (n = 10) were recorded for the blank sample of **1A** suspension. Sample standard deviation σ for the blank probe without the addition of acetone was calculated to be 8.1379.

Fig. S10 Stern–Völmer plot for the luminescence intensities of **1A** in aqueous solutions of different concentrations of acetone.

Fig. S11 Cyclic response of 1A for detecting acetone (luminescence intensity at 616 nm).

Fig. S12 The absorption spectra of different organic solvents and the excitation spectrum of 1A.

Fig. S13 (a) Luminescence spectra of **1A** in water treated with different metal ions $(1 \times 10^{-2} \text{ mol } \text{L}^{-1})$. (b) The luminescence intensities of **1A** at 616 nm upon the addition of different metal ions followed by Fe³⁺ ions. The blue bars represent the intensities in different metal ion aqueous solutions, the red bars represent the intensities in the mixed solutions of Fe³⁺ and other metal ions.

Fig. S14 The SV quenching curve for 1A in aqueous solutions of different concentrations of Fe^{3+} .

Fig. S15 Relation of luminescence intensity against Fe^{3+} added into 1A suspension and their linear fitting curve for the estimation of LOD.

 $= (3 \times 8.1379)/2.7994 \times 10^7 \text{ L mol}^{-1}$

 $= 0.87 \ \mu mol \ L^{-1}$

Fig. S16 Stern–Völmer plot for the luminescence intensities of **1A** in aqueous solutions of different concentrations of Fe^{3+} .

Fig. S17 Cyclic response of **1A** for detecting Fe^{3+} (luminescence intensity at 616 nm).

Fig. S18 The absorption spectra of various cations and the excitation spectrum of 1A.

Fig. S19 (a) Luminescence spectra of 1A in aqueous solutions containing different concentrations of $Cr_2O_7^{2-}$. (b) The SV quenching curve for 1A in aqueous solutions of different concentrations of $Cr_2O_7^{2-}$.

Fig. S20 Relation of luminescence intensity against $Cr_2O_7^{2-}$ added into **1A** suspension and their linear fitting curve for the estimation of LOD.

 $= (3 \times 8.1379) / 1.9562 \times 10^7 \text{ L mol}^{-1}$

= 1.25 μ mol L⁻¹

Fig. S21 Stern–Völmer plot for the luminescence intensities of 1A in aqueous solutions of different concentrations of $Cr_2O_7^{2-}$.

Fig. S22 Cyclic response of **1A** for detecting $Cr_2O_7^{2-}$ (luminescence intensity at 616 nm).

Fig. S23 The absorption spectra of various anions and the excitation spectrum of 1A.

Fig. S24 (a) The luminescence intensities of **1A** at 616 nm upon the addition of different nitro explosives followed by 4-NP. The green bars represent the intensities in different nitro explosive aqueous solutions, the yellow bars represent the intensities in the mixed solutions of 4-NP and other nitro explosives. (b) The SV quenching curve for **1A** in aqueous solutions of different concentrations of 4-NP.

Fig. S25 Relation of luminescence intensity against 4-NP added into **1A** suspension and their linear fitting curve for the estimation of LOD.

 $= (3 \times 8.1379) / 2.6414 \times 10^7 \text{ L mol}^{-1}$

 $= 0.92 \ \mu mol \ L^{-1}$

Fig. S26 Stern–Völmer plot for the luminescence intensities of **1A** in aqueous solutions of different concentrations of 4-NP.

Fig. S27 Cyclic response of 1A for detecting 4-NP (luminescence intensity at 616 nm).

Fig. S28 The absorption spectra of different nitro explosives and the excitation spectrum of 1A.

Fig. S29 The powder X-ray diffraction patterns of **1A** after cyclic sensing acetone, Fe^{3+} , $\text{Cr}_2\text{O}_7^{2-}$ and 4-NP in aqueous solutions.

Fig. S30 Luminescence decay profiles for **1A** (a), acetone@**1A** (b), Fe³⁺@**1A** (c), Cr₂O₇²⁻ @**1A** (d) and 4-NP@**1A** (e) recorded at room temperature. The ⁵D₀ decay curve of **1A** with emission was monitored at 614 nm ($\lambda_{ex} = 328$ nm). The red line is the best fitting to the data using a double exponential function, giving the value of $\tau_1 = 0.597$ ms and $\tau_2 = 0.171$ ms. The ⁵D₀ decay curve of acetone@**1A** with emission was monitored at 614 nm ($\lambda_{ex} = 328$ nm), $\tau_1 = 0.142$ ms and $\tau_2 = 0.522$ ms. The ⁵D₀ decay curve of Fe³⁺@**1A** with emission was monitored at 614 nm ($\lambda_{ex} = 328$ nm), $\tau_1 = 0.535$ ms and $\tau_2 = 0.198$ ms. The ⁵D₀ decay curve of Cr₂O₇²⁻@**1A** with emission was monitored at 614 nm ($\lambda_{ex} = 328$ nm), $\tau_1 = 0.496$ ms and

 $\tau_2 = 0.148$ ms. The ⁵D₀ decay curve of 4-NP@**1A** with emission was monitored at 614 nm ($\lambda_{ex} = 328$ nm), $\tau_1 = 0.122$ ms and $\tau_2 = 0.509$ ms.

Fig. S31 SEM image of 1A after grinding.

Fig. S32 Variation of luminescence intensity of 1A with immersion time in analyte solution of acetone, $Fe(NO_3)_3$ (5 × 10⁻² mol L⁻¹), $K_2Cr_2O_7^{2-}$ (1 × 10⁻² mol L⁻¹) and 4-NP (1 × 10⁻³ mol L⁻¹), respectively.

Table S1. Luminescence lifetimes of 1A, acetone@1A, Fe^{3+} @1A, $Cr_2O_7^{2-}$ @1A and 4-NP@1A

Compounds	luminescence lifetimes		
	$(au_{\mathrm{Eu3+}})$		
1A	$\tau_1 = 0.597 \text{ ms}$	$\tau_2 = 0.171 \text{ ms}$	
acetone@1A	$\tau_1 = 0.142 \text{ ms}$	$\tau_2 = 0.522 \text{ ms}$	
Fe ³⁺ @1A	$\tau_1 = 0.535 \text{ ms}$	$\tau_2 = 0.198 \text{ ms}$	
$Cr_2O_7^{-2-}@1A$	$\tau_1 = 0.496 \text{ ms}$	$\tau_2 = 0.148 \text{ ms}$	
4-NP@1A	$\tau_1 = 0.122 \text{ ms}$	$\tau_2 = 0.509 \text{ ms}$	

	1
Formula	C ₁₆ H ₁₄ O _{9.5} Eu
$Fw (g mol^{-1})$	528
Crystal system	Tetragonal
Space group	$I4_{1}/a$
<i>a</i> (Å)	21.534(3)
<i>c</i> (Å)	15.908(3)
$V(\text{\AA}^3)$	7377(2)
Ζ	16
D_{Calc} (g cm ⁻³)	1.758
$\mu (\mathrm{mm}^{-1})$	3.444
F (000)	3696
heta range (°)	3.11 - 27.47
	$-25 \le h \le 27$
Limiting indices	$-27 \le k \le 27$
	$-20 \le l \le 20$
Refl.Collected / unique	32891 / 4211
R _{int}	0.0412
Data / restraints / parameters	4211 / 0 / 226
GOF	1.074
$R_{I} \left[I > 2\sigma(I) \right]$	0.0611
$wR_2[I > 2\sigma(I)]$	0.1910
R_I (all data)	0.0657

Table S2. Crystal data and structure refinement for 1

wR_2 (all data)	0.1927
Largest diff.peak and hole(e $Å^{-3}$)	7.109 and -0.762
CCDC No.	1845244

Table S3. Selected bond lengths [Å] and angles $[\degree]$ for 1.

Eu(1)-O(8)#1	2.323(8)	Eu(1)-O(2)	2.461(10)
Eu(1)-O(6)#2	2.322(7)	O(3)-Eu(1)#5	2.359(7)
Eu(1)-O(7)#3	2.324(7)	O(5)-Eu(1)#6	2.331(7)
Eu(1)-O(5)#4	2.331(7)	O(6)-Eu(1)#7	2.322(7)
Eu(1)-O(1)	2.347(6)	O(7)-Eu(1)#8	2.324(7)
Eu(1)-O(3)#5	2.359(7)	O(8)-Eu(1)#9	2.323(8)
O(8)#1-Eu(1)-O(6)#2	91.4(3)	O(8)#1-Eu(1)-O(7)#3	71.8(3)
O(6)#2-Eu(1)-O(7)#3	91.8(3)	O(8)#1-Eu(1)-O(5)#4	71.7(3)
O(6)#2-Eu(1)-O(5)#4	98.9(3)	O(7)#3-Eu(1)-O(5)#4	142.1(3)
O(8)#1-Eu(1)-O(1)	105.4(3)	O(6)#2-Eu(1)-O(1)	162.6(3)
O(7)#3-Eu(1)-O(1)	89.4(3)	O(5)#4-Eu(1)-O(1)	90.6(3)
O(8)#1-Eu(1)-O(3)#5	147.3(3)	O(6)#2-Eu(1)-O(3)#5	87.9(3)
O(7)#3-Eu(1)-O(3)#5	140.9(3)	O(5)#4-Eu(1)-O(3)#5	76.2(3)
O(1)-Eu(1)-O(3)#5	80.3(3)	O(8)#1-Eu(1)-O(2)	140.5(4)
O(6)#2-Eu(1)-O(2)	84.4(4)	O(7)#3-Eu(1)-O(2)	69.1(4)
O(5)#4-Eu(1)-O(2)	147.8(4)	O(1)-Eu(1)-O(2)	79.8(4)
O(3)#5-Eu(1)-O(2)	71.9(4)	C(3)-O(1)-Eu(1)	122.3(6)
C(1)-O(3)-Eu(1)#5	141.6(7)	C(3)-O(5)-Eu(1)#6	165.1(7)
C(12)-O(6)-Eu(1)#7	131.9(7)	C(1)-O(7)-Eu(1)#8	158.7(7)
C(12)-O(8)-Eu(1)#9	163.9(8)		

Symmetry transformations used to generate equivalent atoms:

#1 y-3/4, -x+5/4, z-3/4; #2 x, y, z-1; #3 -y+3/4, x+3/4, -z+3/4; #4 -y+5/4, x+3/4, z-1/4; #5 - x+1/2, -y+3/2, -z+1/2; #6 y-3/4, -x+5/4, z+1/4; #7 x, y, z+1; #8 y-3/4, -x+3/4, -z+3/4; #9 - y+5/4, x+3/4, z+3/4, z+3/4.

	K_{SV}	Detection limits	
MOFs		(vol%)	Reference
[Eu(L)(H ₂ O)] 2.5H ₂ O	0.7019	0.0704	This work
[Eu(BTB)(H ₂ O) ₂ solvent] _n	42.6	0.3	22
[Cd(Tipb)(pta) _{0.5} (H ₂ O)-	_	0.084	[1]
$(NO_3)]$ (DMF) $x(H_2O)_y$	-	0.004	[1]
[Cd(Tipb)(mta)] (DMF) _x (H ₂ O) _y	-	0.075	[1]
$Cd_3(L)(H_2O)_2(DMF)_2$ 5DMF	-	0.1	[2]
Cd ₃ (L)(dib) 3H ₂ O 5DMA	-	0.1	[2]
Eu(BTC)(H ₂ O) 1.5H ₂ O	-	0.3	[3]
$Tb(BTC)(H_2O)_6$	-	0.3	[4]
Eu(BTC)(H ₂ O) $4.5H_2O$ Tb(BTC)(H ₂ O) ₆	-	0.3 0.3	[3] [4]

Table S4. The comparison of K_{SV} between **1A** and other reported luminescent sensors for the detection of acetone.

MOFs	K_{SV} (L mol ⁻¹)	Detection limits (µmol L ⁻¹)	Reference
$[Eu(L)(H_2O)]$ 2.5H ₂ O	6.607×10^4	0.87	This work
[Zn(H ₂ bptc)(2,2'-bipy)(H ₂ O)] 3H ₂ O	2.581×10^4	9.5	[5]
$[Zn_2(bptc)(H_2O)] \cdot (4,4'-bipy)_{0.5}$	2.826×10^4	8.5	[5]
${[Eu_2L_{1.5}(H_2O)_2EtOH] DMF}_n$	2.94×10^{3}	10	[6]
EuL ₃	4.1×10^{3}	-	[7]
534-MOF-Tb	5.51×10^3	-	[8]
Pb ₃ O ₂ L	7.80×10^{3}	7.85	4a
${[Cd(L)-(BPDC)] 2H_2O}_n$	3.64×10^4	2.21	[9]
${[Cd(L)(SDBA)(H_2O)] 0.5H_2O}_n$	3.59×10^4	7.14	[9]

Table S5. The comparison of K_{SV} between **1A** and other reported luminescent sensors for the detection of Fe³⁺ ions.

MOFs	$K_{\rm SV}$ (L mol ⁻¹)	Detection limits	Reference
	57 (-)	$(\mu mol L^{-1})$	
[Eu(L)(H ₂ O)] 2.5H ₂ O	5.18×10^{4}	1.25	This work
${[Tb(TATAB)(H_2O)_2] NMP H_2O}_n$	1.11×10^{4}	5	41
[Eu ₂ (tpbpc) ₄ CO ₃ 4H ₂ O] DMF solvent	1.04×10^{4}	3.64	3a
${[Eu_2L_{1.5}(H_2O)_2EtOH] DMF}_n$	1.526×10^{3}	10	[6]
Eu ³⁺ @MIL-121	4.34×10^{3}	-	[10]
534-MOF-Tb	1.37×10^{4}	140	[8]
[Zn ₂ (TPOM)(NH ₂ -BDC) ₂] 4H ₂ O	7.59×10^{3}	3.9	[11]
${[Cd(L)-(BPDC)] 2H_2O}_n$	6.4×10^{3}	37.6	[9]
${[Cd(L)(SDBA)(H_2O)] 0.5H_2O}_n$	4.96×10^{3}	48.6	[9]

Table S6. The comparison of K_{SV} between **1A** and other reported luminescent sensors for the detection of $\operatorname{Cr}_2O_7^{2-}$ ions.

MOFs	K_{SV} (L mol ⁻¹)	Detection limits $(\mu mol L^{-1})$	Reference
[Eu(L)(H ₂ O)] 2.5H ₂ O	7.513×10^4	0.92	This work
Pb ₃ O ₂ L	3.31×10^{3}	2.16	4a
Zn-MOF-1	1.25×10^4	3.74	[12]
[Zn ₂ (TPOM)(NH ₂ -BDC) ₂] 4H ₂ O	2.17×10^4	3.5	[11]
$[Gd_6(L)_3(HL)_2(H_2O)_{10}]$ 18H ₂ O x(solv ent)	8.4×10^{3}	12	[13]
$[Eu_6(L)_3(HL)_2-$ $(H_2O)_{10}] \cdot 10H_2O \text{ x(solvent)}$	-	1.7	[14]

Table S7. The comparison of K_{SV} between **1A** and other reported luminescent sensors for the detection of 4-NP.

References

- [1] Y. Li, H. Song, Q. Chen, K. Liu, F.-Y. Zhao, W.-J. Ruan and Z. Chang, J. Mater. Chem. A, 2014, 2, 9469–9473.
- [2] F.-Y. Yi, W.-T. Yang and Z.-M. Sun, J. Mater. Chem., 2012, 22, 23201–23209.
- [3] B. Chen, Y. Yang, F. Zapata, G. Lin, G. Qian and E. B. Lobkovsky, *Adv. Mater.*, 2007, 19, 1693–1696.
- [4] W. T. Yang, J. Feng and H. J. Zhang, J. Mater. Chem., 2012, 22, 6819–6823.
- [5] J. Sun, P. Zhang, H. Qi, J. Jia, X. D. Chen, S. B. Jing, L. Wang and Y. Fan, *Inorganica Chimica Acta*, 2018, **469**, 298–305.
- [6] W. Liu, X. Huang, C. Xu, C. Y. Chen, L. Z. Yang, W. Dou, W. M. Chen, H. Yang and
 W. S. Liu, *Chem. Eur. J.*, 2016, 22, 18769 –18776.
- [7] M. Zheng, H. Q. Tan, Z. G. Xie, L. G. Zhang, X. B. Jing and Z. C. Sun, ACS Appl. Mater. Interfaces, 2013, 5, 1078–1083.
- [8] M. Chen, W.-M. Xu, J.-Y. Tian, H. Cui, J.-X. Zhang, C.-S. Liu and M. Du, J. Mater. Chem. C, 2017, 5, 2015–2021.
- [9] S. G. Chen, Z. Z. Shi, L. Qin, H. L. Jia and H. G. Zheng, *Cryst. Growth Des.*, 2017, 17, 67–72.
- [10] J.-N. Hao and B. Yan, New J. Chem., 2016, 40, 4654–4661.
- [11]R. Lv, J. Y. Wang, Y. P. Zhang, H. Li, L. Y. Yang, S. Y. Liao, W. Gu and X. Liu, J. Mater. Chem. A, 2016, 4, 15494–15500.
- [12]X.-Y. Guo, F. Zhao, J.-J. Liu, Z.-L. Liu and Y.-Q. Wang, J. Mater. Chem. A, 2017, 5, 20035–20043.
- [13]Q.-H. Tan, Y.-Q. Wang, X.-Y. Guo, H.-T. Liu and Z.-L. Liu, RSC Adv., 2016, 6, 61725–61731.

[14] Y.-Q. Wang, Q.-H. Tan, H.-T. Liu, W. Sun and Z.-L. Liu, *RSC Adv.*, 2015, 5, 86614– 86619.