Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Cationic Red-Emitting Probes for the Rapid and Selective Detection of SO₂ Derivatives in Aqueous and Cellular Environment

Palash Jana[#], Nishaben Patel[§], Virupakshi Soppina[§] and Sriram Kanvah[#]*

[#]Department of Chemistry and [§]Department of Biological Engineering, Indian Institute of

Technology Gandhinagar, Gandhinagar Palaj-382355

<u>*sriram@iitgn.ac.in;</u> svsoppina@iitgn.ac.in

Supporting Information

Fig. S1	Excitation spectra of dye 1 & 2	S2
Fig. S2	Real emission spectra of dye 1 & dye 2	S2
Fig. S3	The emission of dyes 1 and 2 obtained at the corresponding isosbestic points (450 nm for 1 and 475 nm for 2).	S3
Fig. S4	Visual detection of dyes 1 & 2 with the different concentration of SO_3^{2-} anion	S4
Fig. S5	Kinetic response of dyes 1 & 2 in PBS buffer solution	S5
Fig. S6	Fluorescence spectra of dyes 1 & 2 (10 μ M) in PBS buffer solution with the addition of different concentration of [SO ₃ ²⁻]/ μ M	S5
Fig S7	Limit of Detection: Relationship between fluorescence intensity of dyes 1 & 2 with the concentration of sulfite from $0-30\mu M \text{ SO}_3^{2-}$ in PBS buffer solution	S 6
Fig. S8	a) Sulfite detection in H_2O for dye 1 and b) dye 2	S6
Fig. S9	Absorbance spectra of dye 1 & 2 with various analytes in PBS buffer.	S7
Fig. S10	Fluorescence spectra of dye $1 \& 2$ with various analytes in PBS buffer solution	S7
Fig. S11	Competitive fluorescence spectra of dye 1 & 2 with various analytes including sulfite ion in PBS buffer solution	S 8
Fig. S12	Mass spectra of compound $[1-SO_3 + H^+]$	S9
Fig. S13	Mass spectra of compound $[2-SO_3H + H^+]$	S9
Fig. S14	Cytotoxicity	S10
Fig. S15	Time dependent ¹ H-NMR spectrum of dye 1 after 1hr	S11
Fig. S16	Time dependent ¹ H-NMR spectrum of dye2 after 1hr	S11
Fig. S17-S22	NMR Spectral characterization of Compounds	S12-S15

Fig. S1: a) Excitation spectra of compound (1) b) excitation spectra of compound (2)

Fig. S2: a) Real emission spectra of dye (1) b) Real emission spectra of dye (2)

Fig S3: The emission spectra obtained for **1** and **2** upon excitation at isosbestic point (450 nm for **1** and 475 nm for **2**) in the presence of sulfite anion.

Fig. S4: Visual detection of probes **1** (above panel) and probe (**2**) below panel with the different concentration of SO_3^{2-} anion 1) Blank 2) 5µM; 3) 10 µM ; 4) 15 µM; 5) 20 µM; 6) 25 µM; 7) 30 µM; 8) 35 µM; 9) 40µM

Fig. S5: Kinetic response of **a**) compound **1** & **b**) compound **2** in PBS buffer solution (pH = 7.4, 10mM) : Sulfite Concentration: 30 μ M

Fig. S6: Fluorescence spectra of **a**) compound **1 b**) compound **2** (10 μ M) in PBS buffer solution (10mM, pH = 7.4, containing 1% DMSO) with the addition of different concentration of [SO₃²⁻]/ μ M: 0 (1); 2.85 (2); 5.7 (3); 8.5 (4); 11.4 (5); 14.2 (6); 17.2 (7); 20 (8); 22.8 (9); 25.6 (10); 30 (11). $\lambda_{ex} = 410$ nm, for compound **1** & $\lambda_{ex} = 430$ nm for compound **2**. Each spectrum was recorded after 1 min.

Fig. S7: The relationship between fluorescence intensity of **a**) compound (1) [at 647nm] **b**) compound **2** [670nm] and concentration of sulfite from 0-30 μ M SO₃²⁻ in PBS buffer solution (at pH = 7.4, 10mM). The detection limit for dye **1**: 1.47 μ M & for dye **2**: 2.8 μ M

Fig. S8: a) Sulfite detection in H_2O for dye (1) b) Sulfite detection in H_2O for dye (2)

Fig. S9: Absorbance spectra of **a**) compound (1) & **b**) compound (2) with various analytes in PBS buffer solution (pH = 7.4)

Fig. S10: Fluorescence spectra of **a**) compound **1** & **b**) compound **2** with various analytes in PBS buffer solution (pH = 7.4, 10mM)

Fig. S11: **Competitive Experiment:** Fluorescence intensity of a) dye **1** measured at 647nm and b) dye **2** measured at 672nm in phosphate buffer solution (10mM, pH = 7.4, containing 1% DMSO) with various analytes. The concentration of secondary analytes used are 200 μ M (20 equiv unless specified.) and concentration of sulfite used is 30 μ M SO₃²⁻ (3equiv.): The secondary analytes used are 2) Cl⁻ 3) F⁻ 4) Br⁻ 5) I⁻ 6) N₃⁻ 7) S²⁻ 8) S₂O₃²⁻ 9) HCO₃⁻10) CH₃COO⁻11) SCN⁻ 12) SO₄²⁻ 13) HPO₄²⁻ 14) Ascorbic acid 15) Cys (100 equiv.) 16) Homocys (100 equiv.) 17) GSH (100 equiv.) 18) NO₂⁻ 19) NO₃⁻ The column (**1**) in each plot corresponds to the free dye **1** and dye **2** [10 μ M (1equiv.)]

Fig. S12: Mass spectra of compound $[1-SO_3 + H^+]$

Fig. S13: Mass spectra of compound $[2-SO_3H + H^+]$

Fig. S14: Standard MTT assays were performed to test cytotoxicity of a) dye **1** and b) dye **2** in HeLa cells. Incubation was for 24 h after treatment. Experiment was performed three times in triplicates.

Fig. S15: Time-dependent ¹H-NMR spectra of dye) in presence of SO_3^{2-} (DMSO- d_6 :D₂O:8:2) [Dye: Na₂SO₃: 1equiv. (1mM) : 3equiv. (3mM)]

Fig. S16: Time-dependent ¹H-NMR spectra of dye **2** in presence of SO_3^{2-} (DMSO- d_6 :D₂O:8:2) [Dye: Na₂SO₃: 1equiv. (1mM) : 3equiv (3mM)]

Fig. S17: ¹H-NMR spectra of compound 1

Fig. S18: ¹³C-NMR spectra of compound **1**

Fig. S19: ¹H-NMR spectra of compound 2

Fig. S20: ¹³C-NMR spectra of compound **2**

Fig. S21: HRMS spectra of compound 1

Fig. S22: HRMS spectra of compound (2)