Supplementary Information

to the article

Title: Self-assembly of cucurbiturils and cyclodextrins to supramolecular millstones with naphthalene derivatives capable of translocations in the host cavities

Authors: Artem I. Vedernikov,^a Natalia A. Lobova,^a Lyudmila G. Kuz'mina,^b Marina V. Fomina,^a Yuri A. Strelenko,^c Judith A. K. Howard^d and Sergey P. Gromov^{a,e}*

^aPhotochemistry Center of RAS, FSRC "Crystallography and Photonics", Russian Academy of Sciences, ul. Novatorov 7A-1, Moscow 119421, Russian Federation; ^bN. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskiy prosp. 31, Moscow 119991, Russian Federation; ^cN. D. Zelinskiy Institute of Organic Chemistry, Russian Academy of Sciences, Leninskiy prosp. 47, Moscow 119991, Russian Federation; ^dChemistry Department, Durham University, South Road, Durham DH1 3LE, UK; ^eChemistry Department, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation

spgromov@mail.ru

Journal: New Journal of Chemistry

Table of Contents

		Page
1.	Fig. S1 ¹ H NMR spectrum of compound 1.	3
2.	Fig. S2 ¹ H NMR spectrum of compound 2.	4
3.	Fig. S3 ¹ H NMR spectrum of compound 3.	5
4.	Fig. S4 ¹ H NMR spectrum of compound 4.	6
5.	Fig. S5 ¹ H NMR spectrum of compound 5.	7
6.	Fig. S6 ¹³ C NMR spectrum of compound 1 .	8

7.	Fig. S7 13 C NMR spectrum of compound 2 .	9
8.	Fig. S8 ¹³ C NMR spectrum of compound 3.	10
9.	Fig. S9 ¹³ C NMR spectrum of compound 4.	11
10.	Fig. S10 ¹³ C NMR spectrum of compound 5 .	12
11.	Fig. S11 ¹ H NMR spectrum of complex $(1)_2$ @CB[8]·6.5H ₂ O.	13
12.	Fig. S12 ¹ H NMR spectrum of complex $2(5)@\gamma$ -CD·6H ₂ O.	14
13.	Fig. S13 ¹ H NMR spectrum of complex $(5)_2$ @CB[8]·5H ₂ O.	15
14.	Fig. S14 ¹ H NMR spectra of compound 4 and its mixture with β -CD.	16
15.	Fig. S15 ¹ H NMR spectra of compound 4 and its mixture with γ -CD.	16
16.	Fig. S16 ¹ H NMR spectra of compound 5 and its mixture with β -CD.	17
17.	Fig. S17 ¹ H NMR spectra of compound 5 and its mixture with γ -CD.	17
18.	Fig. S18 ¹ H NMR spectra of compound 2 and its mixture with γ -CD.	18
19.	Fig. S19 ¹ H NMR spectra of compound 5 and its mixtures with CB[7].	18
20.	Fig. S20 ¹ H NMR spectrum of a mixture of compound 5 and CB[7].	19
21.	Fig. S21 ¹ H NMR spectra of compound 2 and its mixture with CB[7].	20
22.	Fig. S22 NOESY spectrum of a mixture of compound 3 and β -CD.	21
23.	Fig. S23 Absorption spectrum of compound 1.	22
24.	Fig. S24 Fluorescence spectrum of compound 1.	22
25.	Fig. S25 Absorption and fluorescence spectra of compound 2 and complex $2@\beta$ -CD.	23
26.	Fig. S26 Absorption and fluorescence spectra of compound 4 and complex $4@\beta$ -CD.	24
27.	Fig. S27 Absorption and fluorescence spectra of compound 5 and complex $5@\beta$ -CD.	25
28.	Fig. S28 Absorption and fluorescence spectra of compound 2 and complex 2@y-CD	26
29.	Fig. S29 Absorption and fluorescence spectra of compound 4 and complex	20 27
30.	Fig. S30 Absorption and fluorescence spectra of compound 5 and complex	21
31.	5@γ-CD. Fig. S31 Absorption and fluorescence spectra of compound 2 and complexes	28
22	$2@CB[7] and 2@(CB[7])_2.$	29
32.	Fig. S32 Absorption and fluorescence spectra of compound 4 and complexes $4@CB[7]$ and $4@(CB[7])_2$.	30
33.	Fig. S33 Absorption and fluorescence spectra of compound 5 and complexes $5@CB[7]$ and $5@(CB[7])_2$.	31
34.	Fig. S34 Absorption and fluorescence spectra of compound 5 and complexes 5@CB[8] and (5) ₂ @CB[8].	32

Fig. S1 ¹H NMR spectrum of compound **1** (500.13 MHz, DMSO- d_6 , 25 °C).

Fig. S2 ¹H NMR spectrum of compound **2** (500.13 MHz, DMSO- d_6 , 26 °C).

Fig. S3 ¹H NMR spectrum of compound **3** (500.13 MHz, DMSO- d_6 , 26 °C).

Fig. S4 ¹H NMR spectrum of compound **4** (500.13 MHz, DMSO- d_6 , 26 °C).

Fig. S5 ¹H NMR spectrum of compound **5** (500.13 MHz, DMSO- d_6 , 28 °C).

3-C, 5-C, 3'-C

Fig. S6 ¹³C NMR spectrum of compound **1** (125.76 MHz, DMSO- d_6 , 25 °C).

Fig. S7 ¹³C NMR spectrum of compound **2** (125.76 MHz, DMSO- d_6 , 26 °C).

Fig. S8 ¹³C NMR spectrum of compound **3** (125.76 MHz, DMSO- d_6 , 25 °C).

Fig. S9 ¹³C NMR spectrum of compound 4 (125.76 MHz, DMSO- d_6 , 25 °C).

Fig. S10 ¹³C NMR spectrum of compound **5** (125.76 MHz, DMSO- d_6 , 26 °C).

Fig. S11 ¹H NMR spectrum of complex (1)₂@CB[8]·6.5H₂O, which was obtained by crystallization ($C_{\text{complex}} = 3 \times 10^{-4} \text{ M}$), D₂O, 25 °C.

Fig. S12 ¹H NMR spectrum of complex 2(**5**)@ γ -CD·6H₂O, which was obtained by crystallization ($C_{\text{complex}} = 3 \times 10^{-4} \text{ M}$), D₂O, 25 °C.

Fig. S13 ¹H NMR spectrum of complex (5)₂@CB[8]·5H₂O, which was obtained by crystallization (sat., $C_{\text{complex}} < 1 \times 10^{-4}$ M), D₂O, 25 °C.

regions) of (a, c) compound 4 and (b, d) a 1:6.0 mixture of compound 4 regions) of (a, c) compound 4 and (b, d) a 1:7.4 mixture of compound and β -CD ($C_4 = 5.0 \times 10^{-4}$ M), D₂O–MeCN- d_3 (10:1, v/v), 25 °C.

Fig. S14 ¹H NMR spectra ((a, b) aromatic and (c, d) aliphatic proton Fig. S15 ¹H NMR spectra ((a, b) aromatic and (c, d) aliphatic proton **4** and γ -CD ($C_4 = 4.3 \times 10^{-4}$ M), D₂O–MeCN- d_3 (10:1, v/v), 25 °C.

Fig. S16 ¹H NMR spectra ((a, b) aromatic and (c, d) aliphatic proton Fig. S17 ¹H NMR spectra ((a, b) aromatic and (c, d) aliphatic proton regions) of (a, c) compound 5 and (b, d) a 1:5.8 mixture of compound 5 regions) of (a, c) compound 5 and (b, d) a 1:6.1 mixture of compound and β -CD ($C_5 = 5.2 \times 10^{-4}$ M), D₂O–MeCN- d_3 (10:1, v/v), 25 °C.

5 and γ -CD ($C_5 = 5.2 \times 10^{-4}$ M), D₂O–MeCN- d_3 (10:1, v/v), 25 °C.

Fig. S18 ¹H NMR spectra ((*a*, *b*) aromatic and (*c*, *d*) aliphatic proton Fig. S19 ¹H NMR spectra (aromatic proton region) of (*a*) compound 5 regions) of (a, c) compound 2 and (b, d) a 1:6.5 mixture of compound 2 and (b) 1:0.7 and (c) 1:1.9 mixtures of compound 5 and CB[7] $(C_5 = 1)$ and γ -CD ($C_2 = 4.7 \times 10^{-4}$ M), D₂O–MeCN- d_3 (10:1, v/v), 25 °C.

6.4×10⁻⁴ M), D₂O–MeCN-d₃ (10:1, v/v), 25 °C.

Fig. S20 ¹H NMR spectrum of a 1:1.9 mixture of compound **5** and CB[7] ($C_5 = 6.4 \times 10^{-4}$ M), D₂O–MeCN- d_3 (10:1, v/v), 25 °C.

Fig. S21 ¹H NMR spectra of (*a*) compound **2** and (*b*) a 1:1.9 mixture of compound **2** and CB[7] ($C_2 = 5.7 \times 10^{-4}$ M), D₂O–MeCN- d_3 (10:1, v/v), 25 °C.

Fig. S22 NOESY spectrum of an equimolar mixture of compound **3** and β -CD ($C_3 = C_{CD} = 6 \times 10^{-3}$ M), D₂O, 25 °C.

Fig. S23 Absorption spectrum of compound **1** ($C = 2 \times 10^{-5}$ M), water, ambient temperature, 1-cm quartz cell. **Fig. S24** Fluorescence spectrum of compound **1** ($C = 1 \times 10^{-6}$ M), water, ambient temperature. The fluorescence was excited by light at 356 nm.

Fig. S25 (*a*) Absorption and (*b*) fluorescence spectra of compound 2 ($C_2 = 2 \times 10^{-5}$ M for absorption and $C_2 = 1 \times 10^{-5}$ M for fluorescence) and respective evaluated spectra of complex 2@ β -CD, water, ambient temperature. The fluorescence was excited by light at 313 nm.

Fig. S26 (*a*) Absorption and (*b*) fluorescence spectra of compound 4 ($C_4 = 2 \times 10^{-5}$ M for absorption and $C_4 = 1 \times 10^{-5}$ M for fluorescence) and respective evaluated spectra of complex 4@ β -CD, water, ambient temperature. The fluorescence was excited by light at 319 nm.

(*l*

Fig. S27 (*a*) Absorption and (*b*) fluorescence spectra of compound **5** ($C_5 = 2 \times 10^{-5}$ M for absorption and $C_5 = 1 \times 10^{-5}$ M for fluorescence) and respective evaluated spectra of complex **5**@ β -CD, water, ambient temperature. The fluorescence was excited by light at 311 nm.

Fig. S28 (*a*) Absorption and (*b*) fluorescence spectra of compound **2** ($C_2 = 2 \times 10^{-5}$ M for absorption and $C_2 = 1 \times 10^{-5}$ M for fluorescence) and respective evaluated spectra of complex **2**@ γ -CD, water, ambient temperature. The fluorescence was excited by light at 332 nm.

Fig. S29 (*a*) Absorption and (*b*) fluorescence spectra of compound 4 ($C_4 = 2 \times 10^{-5}$ M for absorption and $C_4 = 1 \times 10^{-5}$ M for fluorescence) and respective evaluated spectra of complex 4@ γ -CD, water, ambient temperature. The fluorescence was excited by light at 319 nm.

Fig. S30 (*a*) Absorption and (*b*) fluorescence spectra of compound **5** ($C_5 = 2 \times 10^{-5}$ M for absorption and $C_5 = 1 \times 10^{-5}$ M for fluorescence) and respective evaluated spectra of complex **5**@ γ -CD, water, ambient temperature. The fluorescence was excited by light at 321 nm.

Fig. S31 (*a*) Absorption and (*b*) fluorescence spectra of compound **2** ($C_2 = 2 \times 10^{-5}$ M for absorption and $C_2 = 1 \times 10^{-6}$ M for fluorescence) and respective evaluated spectra of complexes **2**@CB[7] and **2**@(CB[7])₂, water, ambient temperature. The fluorescence was excited by light at 356 nm.

Fig. S32 (*a*) Absorption and (*b*) fluorescence spectra of compound 4 ($C_4 = 2 \times 10^{-5}$ M for absorption and $C_4 = 1 \times 10^{-6}$ M for fluorescence) and respective evaluated spectra of complexes 4@CB[7] and 4@(CB[7])₂, water, ambient temperature. The fluorescence was excited by light at 356 nm.

Fig. S33 (*a*) Absorption and (*b*) fluorescence spectra of compound **5** ($C_5 = 2 \times 10^{-5}$ M for absorption and $C_5 = 1 \times 10^{-6}$ M for fluorescence) and respective evaluated spectra of complexes **5**@CB[7] and **5**@(CB[7])₂, water, ambient temperature. The fluorescence was excited by light at 359 nm.

Fig. S34 (*a*) Absorption and (*b*) fluorescence spectra of compound **5** ($C_5 = 2 \times 10^{-5}$ M for absorption and $C_5 = 1 \times 10^{-6}$ M for fluorescence) and respective evaluated spectra of complexes **5**@CB[8] and (**5**)₂@CB[8] (per molecule of naphthylpyridine derivative), water, ambient temperature. The fluorescence was excited by light at 333 nm.