Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Solvent coligands fine-tuned the structures and magnetic properties of triple-bridged 1D azido-copper(II) coordination polymers

Peipei Cen,^a Weize Yuan,^a Shuchang Luo,^{c*} Xiangyu Liu,^{b*} Gang Xie,^a and Sanping Chen^{a*}

- [a] Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
- [b] State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
- [c] College of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China

*Corresponding author

Prof. Sanping Chen

E-mail: sanpingchen@126.com

*Corresponding author

Dr. Xiangyu Liu

E-mail: xiangyuliu432@126.com

*Corresponding author

Dr. Shuchang Luo

E-mail: luosc@gues.edu.cn

Table of contents

Table S1. Selected bond lengths (Å) and bond angles (°) for 1-3.

 Table S2. Hydrogen bonding interactions in 1-3.

Table S3. Comparisons of the experimental fitting and DFT calculation

Figure S1. PXRD patterns for compounds: 1 (a), 2 (b), 3 (c).

Figure S2. *M* versus *H* plots at 2.0 K for compounds 1 (a), 2 (b) and 3 (c).

Figure S3. The temperature dependences of χ_M curves for 1-3.

Figure S4. *M* vs *H* curves for compounds 1 (a), 2 (b) and 3 (c) at different temperatures.

Figure S5. Plots of relaxation time (ln τ) vs T^{-1} for 1 (a), 2 (b) and 3 (c) at zero dc field. The red

line is fitted with the Arrhenius law.

Figure S6. Magnetic cores of 1 (a), 2 (b) and 3 (c) used for computational study.

1		2		3	
Cu(1)-O(1)	1.939(5)	Cu(1)-O(2)	1.944(5)	Cu(1)-O(1)	1.952(6)
Cu(1)-O(1)#1	1.939(5)	Cu(1)-O(2)#1	1.944(5)	Cu(1)-O(1)#1	1.952(6)
Cu(1)-N(1)	1.988(6)	Cu(1)-N(1)	1.983(7)	Cu(1)-N(1)	1.970(7)
Cu(1)-N(1)#1	1.988(6)	Cu(1)-N(1)#1	1.983(7)	Cu(1)-N(1)#1	1.970(7)
Cu(1)-O(3)	2.503(6)	Cu(1)-O(3)	2.511(6)	Cu(1)-O(3)	2.579(7)
Cu(2)-O(2)	1.952(5)	Cu(2)-O(1)	1.949(5)	Cu(2)-O(2)	1.959(6)
Cu(2)-O(2)#2	1.952(5)	Cu(2)-O(1)#2	1.949(5)	Cu(2)-O(2)#2	1.959(6)
Cu(2)-N(1)#2	2.009(6)	Cu(2)-N(1)#2	1.987(6)	Cu(2)-N(1)#2	1.995(7)
Cu(2)-N(1)	2.009(6)	Cu(2)-N(1)	1.987(6)	Cu(2)-N(1)	1.995(7)
Cu(2)-O(3)	2.518(6)	Cu(1)-Cu(2)	3.180(6)	Cu(2)-O(3)	2.515(6)
O(1)#1-Cu(1)-O(1)	180.000(1)	O(2)-Cu(1)-O(2)#1	180.0(15)	O(1)#1-Cu(1)-O(1)	180.000(1)
O(1)#1-Cu(1)-N(1)	89.7(2)	O(2)-Cu(1)-N(1)#1	89.5(2)	O(1)#1-Cu(1)-N(1)	89.7(3)
O(1)-Cu(1)-N(1)	90.3(2)	O(1)-Cu(2)-O(1)#2	180.0(2)	O(1)-Cu(1)-N(1)	90.3(3)
O(1)#1-Cu(1)-O(3)	94.0(2)	Cu(2)-O(3)-Cu(1)	79.18(17)	O(1)#1-Cu(1)-O(3)	94.5(2)
O(1)-Cu(1)-O(3)	86.0(2)	Cu(1)-N(1)- Cu(2)	106.5(3)	O(1)-Cu(1)-O(3)	85.5(2)
#1-x+1,-y+2,-z		#1 -x+1,-y+1,-z+1		#1 -x+1,-y,-z+1	
#2-x,-y+2,-z		#2 -x,-y+1,-z+1		#2 -x,-y,-z+1	

Table S1. Selected bond lengths (Å) and bond angles (°) for 1-3.

 Table S2. Hydrogen bonding interactions in 1-3.

compound	Hydrogen bonding interactions							
	D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)			
1	O(3)-H(2)N(3)#3	0.98	1.92	2.879(10)	166.6			
	#1 -x+1,-y+2,-z	#2 -x,-y+2,-z	#3 x,y-1,z					
2	D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)			
	O(3)-H(5)N(3)#3	0.79(13)	2.13(13)	2.907(10)	171(14)			
	#1 -x+1,-y+1,-z+1	#2 -x,-y+1,-z-	+1 #3 x,y+1,z					
3	D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)			
	O(3)-H(1)N(3)#3	0.80(2)	2.17(3)	2.952(12)	169(14)			
	#1 -x+1,-y,-z+1	#2 -x,-y,-z+1	#3 x,y+1,z					

		BP86			B3LYP			
		def2-tzvp	tzvp	tzv	def2-tzvp	tzvp	tzv	
1	$E_{\rm HS}/{\rm eV}$	-174025.35876	-174021.42304	-173996.23780	-173965.15105	-173961.04925	-173933.95464	
	$E_{\rm BS}/{\rm eV}$	-174025.35021	-174021.41438	-173996.22992	-173965.14269	-173961.04097	-173933.94696	
	$J_{\rm DFT}/{ m cm}^{-1}$	68.71	69.65	63.28	67.36	66.74	61.88	
	$J_{\rm Expt}/{ m cm}^{-1}$	56.21						
2	$E_{\rm HS}/{\rm eV}$	-177222.94492	-177218.88028	-177192.23842	-177160.62292	-177156.38115	-177127.77325	
	$E_{\rm BS}/{\rm eV}$	-177222.93580	-177218.87107	-177192.23025	-177160.61289	-177156.37122	-177127.76399	
	$J_{ m DFT}/ m cm^{-1}$	73.12	73.87	65.41	80.79	80.05	74.52	
	$J_{\rm Expt}/{ m cm}^{-1}$	68.94						
3	$E_{\rm HS}/{\rm eV}$	-180439.71763	-180435.65888	-180408.67120	-180375.55046	-180371.31005	-180342.16398	
	$E_{\rm BS}/{\rm eV}$	-180439.70670	-180435.64794	-180408.66105	-180375.53956	-180371.29931	-180342.15392	
	$J_{ m DFT}/ m cm^{-1}$	87.98	88.09	81.57	87.79	86.53	81.03	
	$J_{\rm Expt}/{ m cm}^{-1}$	77.94						

Table S3. Comparisons of the experimental fitting and DFT calculation

Figure S1. PXRD patterns for compounds: 1 (a), 2 (b), 3 (c).

Figure S2. *M* versus *H* plots at 2.0 K for compounds 1 (a), 2 (b) and 3 (c).

Figure S3. The temperature dependences of χ_M curves for 1-3.

Figure S4. *M* vs *H* curves for compounds 1 (a), 2 (b) and 3 (c) at different temperatures.

Figure S5. Plots of relaxation time (ln τ) vs T^{-1} for **1** (a), **2** (b) and **3** (c) at zero dc field. The red line is fitted with the Arrhenius law.

Figure S6. Magnetic cores of 1 (a), 2 (b) and 3 (c) used for computational study.