Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

An Expeditious Synthetic Route To Proteomimetic Foldamers

Vaibhav Karekar^{a, c}, Bapurao Bhoge^{a, c} and Ishu Saraogi^{a, b*}

SUPPORTING INFORMATION

^a Department of Chemistry, Indian Institute of Science Education & Research Bhopal, MP, India

^b Department of Biological Sciences, Indian Institute of Science Education & Research Bhopal, MP, India

^c These authors contributed equally to this paper

Email: ishu@iiserb.ac.in

General experimental considerations

General methods: All commercially available compounds (Alfa-aesar, Sigma-Aldrich, TCI Chemicals, Merck, Spectrochem) were used without purification. All reactions were performed in oven-dried glassware and run under argon or nitrogen atmosphere wherever stated. Tetrahydrofuran was distilled from sodium and benzophenone; CHCl₃ and EtOAc were distilled from CaH₂. Analytical thin layer chromatography was performed on silica gel 60 F₂₅₄ plates (Merck). Column chromatographic purifications were performed with flash silica gel (230-400 mesh) from Merck. Melting points were recorded on a digital melting point apparatus. ¹H and ¹³C NMR spectra were recorded on Bruker Avance III 500MHz NMR Spectrometer or Bruker Avance III 700MHz NMR Spectrometer. NMR spectra were recorded at 295 K in CDCl₃ or DMSO d_6 and chemical shifts were calibrated to the residual proton and carbon resonance of the solvent: CDCl₃ (¹H δ 7.26 ppm; ¹³C δ 77.16 ppm), DMSO-d₆ (¹H δ 2.50 ppm; ¹³C δ 39.52 ppm). All chemical shifts are reported in δ ppm downfield of TMS and peak multiplicities are reported as singlet (s), doublet (d), triplet (t), quartet (q), pentet (p), heptet (hept), doublet of doublet (dd) doublet of triplet (dt), doublet of doublet of doublet (ddd), broad (broad) and multiplet (m). LC-HRMS was recorded on Bruker Daltonics MicroTOF-Q-II in electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) mode.

Scheme S1: Synthesis of sub-monomers 2-4.^{1,2}

Synthetic procedures

Standard procedure A: Alkylation

The phenol substrate was dissolved in DMF. The solution was heated at 80° C followed by addition of K_2CO_3 and the corresponding halide reagent. The reaction mixture was heated and monitored using TLC. After completion of reaction, the reaction mixture was concentrated *in vacuo* and diluted with either EtOAc or DCM. The solution was neutralized using a saturated solution of aq. NH₄Cl, and washed with water and brine. The organic phase was dried over Na₂SO₄ and purified using flash column chromatography to yield the desired compound.

Standard procedure B: Iron mediated nitro reduction

1 eq. of the nitro compound was added to a EtOH:EtOAc mixture (4:1) and refluxed at 80 °C. After obtaining a clear solution, 5 eq. of Fe solid was added followed by 2 eq. of aq. NH_4Cl solution. The reaction was monitored using TLC and filtered on a pad of celite. The solvent was evaporated *in vacuo*. The resulting solid was diluted with either EtOAc or DCM, followed by washing with water and brine. The organic layer was dried over Na_2SO_4 and the residue was purified by flash column chromatography to yield the desired compound.

Standard procedure C: Palladium-carbon mediated nitro reduction

Palladium on charcoal (10 mol %) was added under nitrogen atmosphere to a solution of the nitro compound (1 eq.) in anhydrous EtOAc:THF mixture (4:1). The nitrogen atmosphere was replaced with hydrogen, and the reaction was stirred vigorously until complete by TLC. The hydrogen atmosphere was vented and the reaction mixture filtered through a pad of celite with EtOAc or DCM, concentrated *in vacuo* and purified by flash column chromatography to yield the desired compound.

Standard procedure D: Cleavage of the prenyl ether

Prenyl ether functionalized molecules (1 eq.) were treated with $CeCl_3 \cdot 7H_2O$ (3 eq.) and NaI (3 eq.) in anhydrous MeCN (5 ml). The reaction mixture was refluxed under inert atmosphere and monitored using TLC. The reaction mixture was treated with 1N HCl and extracted using DCM.

The organic phase was washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography to yield the desired compound.

Standard procedure E: Cleavage of the allyl ether

Allyl ether functionalized molecules (1 eq.) were treated with $Pd(PPh_3)_4$ (10 mol%) and sodium toluenesulfinate (1.2 eq.) in anhydrous $CHCl_3$ (5 ml). The reaction was performed under inert atmosphere at room temperature and monitored by TLC. After completion, the reaction mixture was treated with 1N HCl and extracted using CHCl₃. The organic phase was washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography.

Methyl 3-hydroxy-4-nitrobenzoate (2)

Compound 2 was synthesized as reported¹. MP: 79-81 °C. ¹H NMR (500 MHz, CDCl₃) δ 10.50 (s, 1H), 8.18 (d, J = 8.8 Hz, 1H), 7.83 (d, J = 1.8 Hz, 1H), 7.62 (dd, J = 8.8, 1.8 Hz, 1H), 3.96 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 164.97, 154.81, 138.13, 135.93, 125.41, 121.81, 120.74, 53.07. HRMS (ESI) for C₈H₇NO₅ [M+H]⁺ m/z 198.0402 (calc), 198.0426 (found).

Methyl 3-(allyloxy)-4-nitrobenzoate (3)

Compound 3 was synthesized as reported². MP: 59-61 °C. ¹H NMR (500 MHz, **CDCl**₃) δ 7.83 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 1.5 Hz, 1H), 7.69 (dd, J = 8.4, 1.5 Hz, 1H), 6.08 - 6.00 (m, 1H), 5.52 - 5.47 (m, 1H), 5.37 - 5.34 (m, 1H), 4.74 (dt, J = ĊOOMe 5.0, 1.6 Hz, 2H), 3.96 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.33, 151.53, 142.85, 134.89, 131.37, 125.48, 121.70, 118.93, 116.05, 70.37, 52.98. HRMS (APCI) for: C₁₁H₁₁NO₅ [M+H]⁺ m/z 238.0715 (calc), 238.0740(found).

Methyl 3-(allyloxy)-4-aminobenzoate (4)

Compound **4** was synthesized according to the standard procedure B by refluxing **3** (500mg, 2.1 mmol, 1 eq.), with Fe solid (590 mg, 10.5 mmol, 5 eq.) and NH₄Cl (225 mg, 4.2 mmol, 2 eq.) in a EtOH:EtOAc mixture (18:2 ml) for 2 hrs. The residue was purified by flash column chromatography eluting with 20%

EtOAc in hexane to give the title compound 4 as a brown semi-solid (350 mg, 80% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.57 (dd, J = 8.2, 1.7 Hz, 1H), 7.48 (d, J = 1.5 Hz, 1H), 6.70 (d, J = 8.2 Hz, 1H), 6.14 - 6.07 (m, 1H), 5.46 - 5.42 (m, 1H), 5.34 - 5.32 (m, 1H), 4.66 - 4.63 (m, 2H), 4.28 (s, 2H), 3.88 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.39, 145.12, 141.49, 133.14, 124.38, 119.56, 118.03, 113.44, 112.76, 69.40, 51.82. HRMS (ESI) for: C₁₁H₁₃NO₃ [M+H]⁺ m/z 208.0973 (calc), 208.0989 (found).

Methyl 3-(allyloxy)-4-(3-hydroxy-4-nitrobenzamido)benzoate (5)

3-hydroxy 4-nitrobenzoic acid **(1)** (108mg, 0.5 mmol, 1.2 eq.) and PPh₃Cl₂ (321mg, 0.9 mmol, 2 eq.) were dissolved in anhydrous chloroform (5ml) under inert atmosphere. The reaction was stirred at room temperature to obtain a clear solution followed by addition of compound **4** (100mg, 0.5 mmol, 1 eq.). The reaction was completed within 30 min. The reaction mixture was diluted with CHCl₃ and partitioned between CHCl₃ and H₂O. The organic layer was separated and washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The resulting residue was purified by column

chromatography eluting with 1% MeOH in CH_2Cl_2 to yield the title compound **5** as a yellow solid (0.168 mg, 86% yield). **MP**: 168-170 °C. ¹**H NMR (500 MHz, CDCl_3)** δ 10.62 (s, 1H), 8.72 (s, 1H), 8.58 (d, *J* = 8.5 Hz, 1H), 8.26 (d, *J* = 8.8 Hz, 1H), 7.76 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.66 (d, *J* = 1.9 Hz, 1H), 7.62 (d, *J* = 1.7 Hz, 1H), 7.46 (dd, *J* = 8.8, 1.9 Hz, 1H), 6.14 – 6.07 (m, 1H), 5.48 – 5.44 (m, 1H), 5.41 – 5.38 (m, 1H), 4.74 (dt, *J* = 5.4, 1.4 Hz, 2H), 3.92 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.59, 162.78, 155.19, 146.77, 142.94, 135.30, 132.14, 131.52, 126.14, 126.11, 123.72, 119.18, 119.14, 118.52, 112.33, 70.01, 52.34. HRMS (ESI) for: $C_{18}H_{16}N_2O_7$ [M+H]⁺ m/z 373.1036(calc), 373.1022 (found).

Methyl 3-(allyloxy)-4-(3-((3-methylbut-2-en-1-yl)oxy)-4-nitrobenzamido)benzoate (6)

Compound **6** was synthesized according to the standard procedure A by heating compound **5** (920mg, 2.4 mmol, 1 eq.), prenyl bromide (549mg, 3.7 mmol, 1.5 eq.), K₂CO₃ (511mg, 3.7 mmol, 1.5 eq.) in DMF (25ml) for 30 min. The residue was purified by flash column chromatography eluting with 1% MeOH in CH₂Cl₂ to yield the title compound **6** as an off-white solid (1.06mg, 97% yield). **MP**: 75-77 °C. ¹**H NMR (500 MHz, CDCl₃)** δ 8.75 (s, 1H), 8.59 (d, J

= 8.5 Hz, 1H), 7.90 (d, J = 8.3 Hz, 1H), 7.77 (dd, J = 8.5, 1.7 Hz, 1H), 7.70 (d, J =

1.6 Hz, 1H), 7.62 (d, J = 1.7 Hz, 1H), 7.38 (dd, J = 8.3, 1.7 Hz, 1H), 6.14 – 6.06 (m, 1H), 5.51 – 5.44 (m, 2H), 5.42 – 5.40 (m, 1H), 4.76 (d, J = 6.7 Hz, 2H), 4.76 – 4.74 (m, 2H), 3.92 (s, 3H), 1.80 (d, J = 0.7 Hz, 3H), 1.78 (s, 3H). ¹³**C NMR (126 MHz, CDCl₃)** δ 166.64, 163.38, 152.57, 146.77, 142.23, 140.26, 139.68, 132.18, 131.71, 126.00, 125.98, 123.79, 119.18, 119.08, 118.02, 117.52, 114.87,

112.29, 69.99, 66.99, 52.35, 25.95, 18.53. HRMS (ESI) for: $C_{23}H_{24}N_2O_7$ [M+Na]⁺ m/z 463.1482(calc), 463.1497 (found).

Methyl-3-(allyloxy)-4-(4-amino-3-((3-methylbut-2-en-1-yl)oxy)benzamido)benzoate (7)

Compound **7** was synthesized according to the standard procedure B by refluxing **6** (500mg, 2.1 mmol, 1 eq.), Fe solid (590 mg, 10.5 mmol, 5 eq.) and NH₄Cl (225 mg, 4.2 mmol, 2 eq.) in EtOH:EtOAc mixture (18:2 ml) for 2 hrs. The residue was purified by flash column chromatography eluting with 10% EtOAc in CH₂Cl₂ to yield the title compound **7** as a crystalline white solid (440mg, 94% yield). **MP**: 78-80 °C. ¹H **NMR (500 MHz, CDCl₃)** δ 8.71 (s, 1H), 8.63 (d, *J* = 8.5 Hz, 1H), 7.74 (dd, *J* = 8.5, 1.3 Hz, 1H), 7.58 (s, 1H), 7.46 (s, 1H),

7.28 (dd, J = 8.2, 1.0 Hz, 1H), 6.72 (d, J = 8.1 Hz, 1H), 6.15 – 6.07 (m, 1H), 5.53 – 5.46 (m, 2H), 5.36 (d, J = 10.5 Hz, 1H), 4.71 – 4.70 (m, 2H), 4.63 (d, J = 6.7 Hz, 2H), 4.24 (s broad, 2H), 3.91 (s, 3H), 1.81 (s, 3H), 1.76 (s, 3H). ¹³**C** NMR (126 MHz, CDCl₃) δ 166.90, 165.31, 146.48, 146.13, 140.92, 138.46, 133.01, 132.48, 124.52, 123.99, 123.90, 120.15, 119.51, 118.61, 118.57, 113.34, 112.11, 111.11, 69.79, 65.44, 52.15, 25.91, 18.35. HRMS (ESI) for: C₂₃H₂₆N₂O₅ [M+H]⁺ m/z 411.1920 (calc), 411.1916 (found).

Methyl-3-(allyloxy)-4-(4-(3-hydroxy-4-nitrobenzamido)-3-((3-methylbut-2-en-1-yl) oxy)benzamido)benzoate **(8)**

3-Hydroxy 4-nitrobenzoic acid **(1)** (49mg, 0.2 mmol, 1.1 eq.) and PPh₃Cl₂ (161mg, 0.4 mmol, 2 eq.) were dissolved in anhydrous CHCl₃ (5ml) under inert atmosphere. The mixture was allowed to stir at room temperature to obtain clear solution followed by addition of compound **7** (100mg, 0.2 mmol, 1 eq.). The reaction was completed within 30 min. The reaction mixture was diluted with CHCl₃ and partitioned between CHCl₃ and H₂O. The organic layer was separated and washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The resulting residue was purified by column chromatography eluting with 1% MeOH in CH₂Cl₂ to yield the title

Coome compound **8** as a yellow solid (120mg, 85% yield). **MP**: 148-150 °C. ¹**H NMR (500 MHz, CDCl₃)** δ 10.62 (s, 1H), 8.83 (s, 1H), 8.73 (s, 1H), 8.63 (d, J = 8.4 Hz, 2H), 8.27 (d, J = 8.7 Hz, 1H), 7.76 (dd, J = 8.5, 1.5 Hz, 1H), 7.66 (d, J = 1.7 Hz, 1H), 7.65 (d, J = 1.6 Hz, 1H), 7.61 (d, J = 1.4 Hz, 1H), 7.47 (dd, J = 8.8, 1.8 Hz, 1H), 7.44 (dd, J = 8.5, 1.6 Hz, 1H), 6.17 – 6.09 (m, 1H), 5.53 – 5.47 (m, 2H), 5.40 (dd, J = 10.5, 0.8 Hz, 1H), 4.75 – 4.72 (m, 4H), 3.92 (s, 3H), 1.83 (s, 3H), 1.80 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.76, 164.50, 162.82, 155.17, 147.85, 146.65, 142.90, 139.93, 135.30, 132.38, 132.32, 130.92, 130.70, 126.08, 125.23, 123.82, 119.26, 119.15, 119.12, 118.95, 118.76, 118.58, 118.53, 112.16, 111.30, 69.91, 66.31, 52.24, 25.97, 18.53. HRMS (ESI) for: $C_{30}H_{29}N_3O_9$ [M+H]⁺ m/z 576.1982 (calc), 576.1992 (found).

Methyl 3-(allyloxy)-4-(4-(3-(benzyloxy)-4-nitrobenzamido)-3-((3-methylbut-2-en-1-yl) oxy)benzamido)benzoate (9a)

Compound **9a** was synthesized according to the standard procedure A by heating compound **8** (0.345mg, 0.6 mmol, 1 eq.), benzyl bromide (205mg, 1.2 mmol, 2 eq.) and K_2CO_3 (165mg, 1.2 mmol, 2 eq.) in DMF (15ml) for 12 hrs. The residue was purified by flash column chromatography eluting with 5% diethyl ether in CH₂Cl₂ to yield the title compound **9a** as an off-white solid (360mg, 90%). MP: 145-147 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.83 (s, 1H), 8.74 (s, 1H), 8.65 – 8.61 (m, 2H), 7.95 (d, J = 8.3 Hz, 1H), 7.78 – 7.75 (m, 2H), 7.64 (d, J = 1.8 Hz, 1H), 7.61 (d, J = 1.7 Hz, 1H), 7.49 – 7.34 (m, 7H), 6.17 – 6.09 (m, 1H), 5.52– 5.47 (m, 2H), 5.40 (dd, J = 10.5, 1.2 Hz, 1H), 5.33 (s, 2H), 4.75 – 4.73 (m, 4H), 3.92 (s, 3H), 1.81 (s, 3H), 1.79 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 166.76, 164.53, 163.18, 152.22, 147.81, 146.65, 142.16, 139.86, 139.78, 135.03, 132.39, 132.34, 130.97, 130.59, 128.93, 128.62,

127.31, 126.08, 125.23, 123.82, 119.17, 119.14, 118.90, 118.76, 118.52, 118.14, 114.85, 112.17, 111.16, 71.52, 69.89, 66.23, 52.23, 25.99, 18.51. HRMS (APCI) for: $C_{37}H_{35}N_3O_9$ [M+H]⁺ m/z 666.2451(calc), 666.2449(found).

Methyl 3-(allyloxy)-4-(4-(3-(benzyloxy)-4-nitrobenzamido)-3-hydroxybenzamido)benzoate (9b)

Compound **9b** was synthesized according to the standard procedure D by refluxing compound **9a** (170mg, 0.2 mmol, 1 eq.), CeCl₃•7H₂O (188, 0.7 mmol, 3 eq.) and Nal (114mg, 0.7 mmol, 3 eq.) in anhydrous MeCN (15 ml) for 7 hrs. The residue was purified by column chromatography eluting with 5% THF in CH₂Cl₂ to yield the title compound **9b** as a yellow solid (140mg, 92% yield). **MP**: 200-202 °C. ¹H **NMR (500 MHz, DMSO)** δ 10.37 (s, 1H), 9.87 (s, 1H), 9.44 (s, 1H), 8.14 (d, *J* = 8.4 Hz, 1H), 8.05 (d, *J* = 8.2 Hz, 1H), 7.99 (s, 1H), 7.89 (d, *J* = 8.2 Hz, 1H), 7.70 – 7.37 (m, 10H), 6.16 – 6.09 (m, 1H), 5.48 – 5.44 (m, 3H), 5.31 (d, *J* = 10.5 Hz, 1H), 4.77 (d, *J* = 4.7 Hz, 2H), 3.86 (s, 3H). ¹³C **NMR (126 MHz, DMSO)** δ 165.85, 164.53, 163.76, 150.64, 149.45, 148.88, 141.43, 139.34, 135.79, 133.27, 132.10, 131.49, 128.94, 128.63, 128.24, 127.53, 125.70, 125.11, 123.96, 122.32, 122.02, 120.09, 118.11, 117.55, 114.91, 114.82, 112.78, 70.82, 69.23, 52.17.

HRMS (APCI) for: C₃₂H₂₇N₃O₉ [M+H]⁺ m/z 598.1825 (calc), 598.1798 (found).

Methyl 3-(allyloxy)-4-(4-(3-(benzyloxy)-4-nitrobenzamido)-3-(naphthalen-2-ylmethoxy) benzamido)benzoate **(9c)**

Compound **9c** was synthesized according to the standard procedure A by heating compound **9b** (95mg, 0.1 mmol, 1 eq.), 2-(bromomethyl)naphthalene (70mg, 0.3 mmol, 2 eq.) and K₂CO₃ (43mg, 0.3 mmol, 2 eq.) in DMF (10 ml) for 12 hrs. The residue was purified by flash column chromatography eluting with 5% diethyl ether in CH₂Cl₂ to yield the title compound **9c** as an off-white solid (82mg, 70% yield). **MP**: 176-178 °C. ¹**H NMR (500 MHz, CDCl₃)** δ 8.83 (s, 1H), 8.76 (s, 1H), 8.66 (d, *J* = 8.4 Hz, 1H), 8.63 (d, *J* = 8.5 Hz, 1H), 7.90 – 7.87 (m, 2H), 7.83 – 7.80 (m, 3H), 7.77 – 7.74 (m, 2H), 7.64 (d, *J* = 1.3 Hz, 1H), 7.60 (d, *J* = 1.5 Hz, 1H), 7.55 – 7.48 (m, 4H), 7.38 – 7.31 (m, 5H), 7.27 – 7.25 (m, 1H), 6.17 – 6.09 (m, 1H), 5.49 (dd, *J* = 17.2, 1.2 Hz, 1H), 5.41 – 5.39 (m, 3H), 5.12 (s, 2H), 4.72 (d, *J* = 5.4 Hz, 2H), 3.91

(s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.80, 164.40, 163.08, 152.16, 147.96, 146.69, 142.17, 139.45, 134.91, 133.45, 133.37, 133.08, 132.36, 131.24, 130.80, 129.11, 128.90, 128.60, 128.02, 128.01, 127.35, 127.34, 127.33, 126.98, 126.93, 126.05, 125.33, 125.25, 123.87, 119.83, 119.36, 118.96, 118.83, 118.23, 114.44, 112.24, 111.88, 72.16, 71.41, 69.93, 52.29. HRMS (ESI) for: $C_{43}H_{35}N_3O_9$ [M+Na]⁺ m/z 760.2271 (calc), 760.2251 (found).

Methyl 4-(4-(3-(benzyloxy)-4-nitrobenzamido)-3-(naphthalen-2yl-methoxy)benzamido)-3hydroxybenzoate (9d)

Compound **9d** was synthesized according to the standard procedure E by stirring compound **9c** (50mg, 0.06 mmol, 1 eq.), Pd(PPh₃)₄ (10 mol%), sodium toluenesulfinate (24mg, 0.1 mmol, 2 eq.) in anhydrous CHCl₃ (5 ml) for 5 hrs. The residue was purified by column chromatography eluting with 5% THF in CH₂Cl₂ to yield the title compound **9d** as an off-white solid (32mg, 67% yield). **MP**: 190-192 °C. ¹H **NMR (500 MHz, DMSO)** δ 10.43 (s, 1H), 10.06 (s, 1H), 9.56 (s, 1H), 8.06 – 8.04 (m, 2H), 8.00 – 7.96 (m, 3H), 7.91 – 7.80 (m, 4H), 7.72 – 7.67 (m, 3H), 7.54 (d, *J* = 1.8 Hz, 1H), 7.49 – 7.48 (m, 3H), 7.41 – 7.34 (m, 5H), 5.50 (s, 2H), 5.33 (s, 2H), 3.84 (s, 3H). ¹³C **NMR (176 MHz, DMSO)** δ 165.92, 164.53, 163.71, 150.67, 150.61, 148.44, 141.45,

139.30, 135.63, 134.41, 132.74, 132.55, 131.77, 130.68, 130.27, 128.58, 128.23, 128.08, 127.68, 127.63, 127.51, 126.38, 126.16, 125.97, 125.91, 125.39, 125.14, 124.29, 122.73, 120.51, 120.28, 120.05, 115.74, 114.66, 112.52, 70.82, 70.31, 52.05. **HRMS (ESI)** for: $C_{40}H_{31}N_3O_9$ [M+Na]⁺ m/z 720.1958 (calc), 720.1945 (found).

Methyl 4-(4-(3-(benzyloxy)-4-nitrobenzamido)-3-(naphthalen-2yl-methoxy)benzamido)-3isopropoxybenzoate **(9e)**

Compound **9e** was synthesized according to the standard procedure A by heating compound **9d** (90mg, 0.1 mmol, 1 eq.), 2-iodopropane (65 mg, 0.3 mmol, 3 eq.) and K_2CO_3 (35mg, 0.2 mmol, 2 eq.) in DMF (5 ml) for 12 hrs. The residue was purified by flash column chromatography eluting with 5% diethyl ether in CH_2Cl_2 to yield the title compound **9e** as a yellow solid (60mg, 63% yield). **MP**: 173-175 °C. ¹**H NMR (500 MHz, CDCl_3)** δ 8.87 (s, 1H), 8.76 (s, 1H), 8.67 (d, *J* = 8.4 Hz, 1H), 8.62 (d, *J* = 8.5 Hz, 1H), 7.91 – 7.72 (m, 7H), 7.65 (d, *J* = 1.5 Hz, 1H), 7.61 (d, *J* = 1.6 Hz, 1H), 7.55 – 7.47 (m, 4H), 7.37 – 7.34 (m, 5H), 7.28 – 7.27 (m, 1H), 5.42 (s, 2H), 5.13 (s, 2H), 4.80 (hept, *J* = 6.1 Hz, 1H), 3.92 (s, 3H), 1.45 (d, *J* = 6.1 Hz, 6H). ¹³**C NMR (176 MHz**,

CDCl₃) δ 166.93, 165.80, 164.31, 163.12, 152.17, 147.99, 145.94, 142.17, 139.48, 134.90, 133.45, 133.36, 133.07, 133.00, 131.19, 130.95, 129.12, 128.92, 128.61, 128.03, 128.01, 127.35, 127.34, 126.99, 126.94, 126.08, 125.30, 125.25, 123.45, 119.63, 119.38, 118.79, 118.24, 114.44, 113.26, 111.94, 72.15, 72.01, 71.41, 52.28, 22.37. **HRMS (ESI)** for: $C_{43}H_{37}N_3O_9$ [M+H]⁺ m/z 740.2608 (calc), 740.2590 (found).

Methyl 4-(4-(3-(benzyloxy)-4-nitrobenzamido)-3-(naphthalen-2ylmethoxy)benzamido)-3isobutoxybenzoate (9f)

Compound **9f** was synthesized according to the standard procedure A by heating compound **9d** (36 mg, 0.05 mmol, 1 eq.), 1-bromo-2methylpropane (35mg, 0.2 mmol, 5 eq.) and K₂CO₃ (10mg, 0.07 mmol, 1.5 eq.) in DMF (5 ml) for 12 hrs. The residue was purified by flash column chromatography eluting with 5% diethyl ether in CH₂Cl₂ to yield the title compound **9f** as an off-white solid (32mg, 84% yield). **MP**: 165-167 °C. ¹**H NMR (500 MHz, CDCl₃)** δ 8.88 (s, 1H), 8.77 (s, 1H), 8.67 (d, *J* = 8.4 Hz, 1H), 8.63 (d, *J* = 8.5 Hz, 1H), 7.91 – 7.74 (m, 7H), 7.64 (d, *J* = 1.5 Hz, 1H), 7.59 (d, *J* = 1.7 Hz, 1H), 7.55 – 7.49 (m, 4H), 7.37 – 7.33 (m, 5H), 7.28-7.26 (m, 1H), 5.42 (s, 2H), 5.13 (s, 2H), 3.96 – 3.92 (m, 5H), 2.27 – 2.17 (m, 1H), 1.13 (d, *J* = 6.7 Hz, 6H). ¹³**C NMR (126**

MHz, CDCl₃) δ 166.92, 164.30, 161.59, 152.18, 148.01, 147.18, 142.22, 139.46, 134.91, 133.48, 133.38, 133.06, 132.27, 131.26, 130.91, 129.14, 128.92, 128.62, 128.04, 128.02, 127.40, 127.34, 127.01, 126.96, 126.08, 125.35, 125.27, 123.56, 119.64, 119.37, 118.60, 118.23, 114.45, 111.89,

111.72, 75.30, 72.21, 71.43, 52.28, 28.50, 19.52. **HRMS (APCI)** for: C₄₄H₃₉N₃O₉ [M+H]⁺ m/z 754.2764 (calc), 754.2742 (found).

Methyl 3-(allyloxy)-4-(4-(3-isopropoxy-4-nitrobenzamido)-3-((3-methylbut-2-en-1-yl) oxy)benzamido)benzoate (10a)

Compound **10a** was synthesized according to the standard procedure A by heating compound **8** (350mg, 0.6 mmol, 1 eq.), 2-bromopropane (445mg, 3.6 mmol, 6 eq.) and K_2CO_3 (167mg, 1.2 mmol, 2 eq.) in DMF (20 ml) for 12 hrs. The residue was purified by flash column chromatography eluting with 5% diethylether in CH₂Cl₂ to yield the title compound **10a** as a yellow solid (343mg, 91% yield). **MP**: 167-169 °C. ¹H **NMR (500 MHz, CDCl₃)** δ 8.83 (s, 1H), 8.75 (s, 1H), 8.64 - 8.62 (m, 2H), 7.87 (d, *J* = 8.3 Hz, 1H), 7.76 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.67 (d, *J* = 1.4 Hz, 1H), 7.65 (d, *J* = 1.7 Hz, 1H), 7.61 (d, *J* = 1.6 Hz, 1H), 7.45 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.39 (dd, *J* = 8.3, 1.6 Hz, 1H), 6.17 - 6.09 (m, 1H), 5.52 - 5.47 (m, 2H), 5.40 (dd, *J* = 10.5, 1.1 Hz, 1H), 4.83 (hept, *J* = 1.6 Hz, 1H), 4.74 - 4.73 (m, 4H), 3.92 (s, 3H), 1.82 (s, 3H), 1.79 (s, 3H), 1.45 (d, *J* = 6.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.80, 164.60, 163.48, 151.64, 147.82, 146.67, 143.04, 139.91, 139.53,

132.43, 132.34, 131.06, 130.58, 125.89, 125.26, 123.87, 119.18, 119.10, 118.93, 118.80, 118.49, 117.69, 115.46, 112.22, 111.14, 73.27, 69.92, 66.23, 52.26, 26.01, 21.95, 18.51 **HRMS (ESI)** for: $C_{33}H_{35}N_3O_9$ [M+Na]⁺ m/z 640.2271 (calc), 640.2260 (found).

Methyl 3-(allyloxy)-4-(3-hydroxy-4-(3-isopropoxy-4-nitrobenzamido)benzamido)benzoate (10b)

Compound **10b** was synthesized according to the standard procedure D by refluxing compound **10a** (300mg, 0.5 mmol, 1 eq.), $CeCl_3 \cdot 7H_2O$ (358mg, 1.4 mmol, 3 eq.) and Nal (218mg, 1.4 mmol, 3 eq.) in anhydrous MeCN (20 ml) for 7 hrs. The residue was purified by column chromatography eluting with 5% THF in DCM to yield the title compound **10b** as a yellow solid (214mg, 80% yield). **MP**: 189-191 °C. ¹**H NMR (500 MHz, CDCl_3)** δ 9.43 (s broad, 1H), 8.70 (s, 1H), 8.50 – 8.47 (m, 2H), 8.36 (d, *J* = 8.5 Hz, 1H), 7.87 (d, *J* = 1.9 Hz, 1H), 7.75 (d, *J* = 8.3 Hz, 1H), 7.62 – 7.50 (m, 2H), 7.50 (d, *J* = 1.5 Hz, 1H), 7.25 – 7.19 (m, 2H), 6.26 – 6.19 (m, 1H), 5.59 (dd, *J* = 17.2, 1.2 Hz, 1H), 5.49 (dd, *J* = 10.5, 1.1 Hz, 1H), 4.84 – 4.78 (m, 3H), 3.78 (s, 3H), 1.43 (d, *J* = 6.1 Hz, 6H). ¹³C **NMR (176 MHz, CDCl_3)** δ 166.34, 165.35,

163.42, 151.55, 147.08, 146.82, 143.02, 138.46, 132.39, 131.53, 130.36, 125.84, 125.64, 123.45,

119.93, 119.01, 118.79, 118.21, 117.50, 115.72, 115.37, 112.23, 73.26, 69.88, 52.32, 51.05, 21.94. **HRMS (ESI)** for: C₂₈H₂₇N₃O₉ [M+Na]⁺ m/z 572.1645 (calc), 572.1634 (found).

Methyl 3-(allyloxy)-4-(4-(3-isopropoxy-4-nitrobenzamido)-3-(pentan-3-yloxy)benzamido) benzoate **(10c)**

Compound **10c** was synthesized according to the standard procedure A by heating compound **10b** (100mg, 0.1 mmol, 1 eq.), 2-bromopentane (137mg, 0.9 mmol, 5 eq.) and K₂CO₃ (50mg, 0.3 mmol, 2 eq.) in DMF (5 ml) for 18 hrs. The residue was purified by flash column chromatography eluting with 5% diethyl ether in CH₂Cl₂ to yield the title compound **10c** as an off white-solid (96mg, 86% yield). **MP**: 148-150 °C. ¹H **NMR (500 MHz, CDCl₃)** ¹H **NMR (500 MHz, CDCl₃)** δ 8.83 (s, 2H), 8.66 (d, *J* = 8.4 Hz, 1H), 8.63 (d, *J* = 8.5 Hz, 1H), 7.88 (d, *J* = 8.3 Hz, 1H), 7.76 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.35 (dd, *J* = 8.3, 1.7 Hz, 1H), 6.17 – 6.09 (m, 1H), 5.49 (ddd, *J* = 17.2, 2.8,

1.5 Hz, 1H), 5.40 (ddd, J = 10.5, 2.4, 1.2 Hz, 1H), 4.81 (hept, J = 6.1 Hz, 1H), 4.73 (dt, J = 5.4, 1.3 Hz, 2H), 4.46 (p, J = 5.8 Hz, 1H), 3.92 (s, 3H), 1.86 – 1.74 (m, 4H), 1.45 (d, J = 6.1 Hz, 6H), 1.01 (t, J = 7.5 Hz, 6H).¹³C NMR (126 MHz, CDCl₃) δ 166.78, 164.63, 163.33, 151.69, 147.28, 146.66, 143.03, 139.55, 132.41, 132.32, 131.62, 130.58, 125.95, 125.25, 123.84, 119.18, 118.97, 118.93, 118.76, 117.32, 115.48, 112.19, 112.11, 81.96, 73.27, 69.91, 52.25, 26.12, 21.95, 9.65. HRMS (ESI) for: C₃₃H₃₇N₃O₉ [M+Na]⁺ m/z 642.2428 (calc), 642.2422 (found).

Methyl 3-hydroxy-4-(4-(3-isopropoxy-4-nitrobenzamido)-3-(pentan-3-yloxy)benzamido) benzoate (10d)

Compound **10d** was synthesized according to the standard procedure E by stirring compound **10c** (100mg, 0.1 mmol, 1 eq.), Pd(PPh₃)₄ (10 mol%), sodium toluenesulfinate (57mg, 0.3 mmol, 2 eq.) in anhydrous CHCl₃ (10 ml) for 5 hrs. The residue was purified by column chromatography eluting with 5% THF in CH₂Cl₂ to yield title compound **10d** as an off-white solid (80mg, 86% yield). **MP**: 218-220 °C. ¹**H NMR (500 MHz, DMSO)** δ 10.41 (s broad, 1H), 9.73 (s, 1H), 9.53 (s, 1H), 8.03 – 7.98 (m, 3H), 7.80 (s, 1H), 7.65 (d, *J* = 1.2 Hz, 1H), 7.61 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.58 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.53 (d, *J* = 1.8 Hz, 1H), 7.49 (dd, *J* = 8.3, 1.8 Hz, 1H), 4.94 (hept, *J* = 6.0 Hz, 1H), 4.44 (p, *J* = 5.7 Hz, 1H), 3.83 (s, 3H), 1.72– 1.66 (m, 4H), 1.34 (d, *J* = 6.0 Hz, 6H), 0.93 (t, *J* =

7.4 Hz, 6H).¹³C NMR (176 MHz, DMSO) δ 165.92, 164.60, 163.79, 149.83, 149.76, 148.48, 142.34, 139.26, 131.44, 130.90, 130.72, 125.91, 125.03, 123.53, 122.75, 120.50, 119.78, 119.53, 115.72, 115.12, 112.98, 80.91, 72.50, 52.04, 25.32, 21.59, 9.28. HRMS (ESI) for: C₃₀H₃₃N₃O₉ [M+Na]⁺ m/z 602.2115 (calc), 602.2092 (found).

Methyl3-(benzyloxy)-4-(4-(3-isopropoxy-4-nitrobenzamido)-3-(pentan-3-yloxy)benzamido) benzoate **(10e)**

Compound **10e** was synthesized according to the standard procedure A by heating compound **10d** (50mg, 0.08 mmol, 1 eq.), benzyl bromide (18mg, 0.1 mmol, 1.5 eq.) and K₂CO₃ (29mg, 0.1 mmol, 2 eq.) in DMF (5ml) for 5 hrs. The residue was purified by flash column chromatography eluting with 5% diethyl ether in CH₂Cl₂ to yield the title compound **10e** as an off-white solid (50mg, 87% yield). **MP**: 181-183 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.82 (s, 1H), 8.81 (s, 1H), 8.65 (d, *J* = 8.4 Hz, 1H), 8.57 (d, *J* = 8.3 Hz, 1H), 7.87 (d, *J* = 8.2 Hz, 1H), 7.78 (d, *J* = 8.4 Hz, 1H), 7.73 (s, 1H), 7.68 (s, 1H), 7.56 (s, 1H), 7.48 – 7.41 (m, 5H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.29 (d, *J* = 8.3 Hz, 1H), 5.23 (s, 2H), 4.81 (hept, *J* = 5.8 Hz,

1H), 4.40 - 4.36 (m, 1H), 3.93 (s, 3H), 1.80 - 1.71 (m, 4H), 1.45 (d, J = 5.9 Hz, 6H), 0.98 (t, J = 7.3 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.80, 164.54, 163.32, 151.73, 147.23, 147.00, 143.06, 139.56, 135.99, 132.59, 131.62, 130.41, 129.08, 128.93, 127.92, 125.98, 125.33, 124.09, 119.10, 119.02, 118.80, 117.28, 115.50, 112.52, 112.02, 81.91, 73.29, 71.63, 52.30, 26.12, 21.97, 9.64. HRMS (APCI) for: $C_{37}H_{39}N_3O_9$ [M+H]⁺ m/z 670.2764 (calc), 670.2782 (found).

Methyl 3-(allyloxy)-4-(3-hydroxy-4-(3-hydroxy-4-nitrobenzamido)benzamido)benzoate (11)

Compound **11** was synthesized according to the standard procedure D by refluxing compound **8** (150mg, 0.2 mmol, 1 eq.), CeCl₃•7H₂O (192mg, 0.7 mmol, 3 eq.) and Nal (117mg, 0.7 mmol, 3 eq.) in anhydrous MeCN (10 ml) for 12 hrs. The residue was purified by column chromatography eluting with 5% THF in CH₂Cl₂ to yield the title compound **11** as a yellow solid (115mg, 86% yield). **MP**: 202-204 °C. ¹H **NMR (500 MHz, DMSO)** δ 11.38 (s broad, 1H), 10.37 (s, 1H), 9.74 (s, 1H), 9.42 (s, 1H), 8.15 (d, *J* = 8.3 Hz, 1H), 8.00 (d, *J* = 8.5 Hz, 1H), 7.95 (d, *J* = 8.3 Hz, 1H), 7.66 – 7.59 (m, 2H), 7.59 (s, 1H), 7.55 – 7.47 (m, 3H), 6.17 – 6.07 (m, 1H), 5.48 – 5.45 (m, 1H), 5.31 (d, *J* = 10.5 Hz, 1H), 4.77 (d, *J* = 4.7 Hz, 2H), 3.86 (s, 3H). ¹³C **NMR (176 MHz**,

S12

DMSO) δ 165.83, 164.50, 163.72, 151.53, 149.10, 148.84, 139.82, 138.96, 133.27, 132.10, 131.25, 129.09, 125.65, 125.44, 123.29, 122.31, 121.97, 118.37, 118.15, 118.03, 117.53, 114.78, 112.75, 69.21, 52.16. **HRMS (ESI)** for: $C_{25}H_{21}N_3O_9$ [M+Na]⁺ m/z 530.1176 (calc), 530.1178 (found).

Methyl 3-(allyloxy)-4-(3-(benzyloxy)-4-(3-(benzyloxy)-4-nitrobenzamido)benzamido) benzoate (11a)

Compound **11a** was synthesized according to the standard procedure A by heating compound **11** (218mg, 0.4 mmol, 1 eq.), benzyl bromide (178mg, 1.2 mmol, 3 eq.) and K₂CO₃ (220mg, 1.2 mmol, 3 eq.) in DMF (20 ml) for 12 hrs. The residue was purified by flash column chromatography eluting with 5% diethyl ether in CH₂Cl₂ to yield the title compound **11a** as an off-white solid (254mg, 86% yield). **MP**: 177-179 °C. ¹**H NMR (500 MHz, CDCl₃)** δ 8.83 (s, 1H), 8.75 (s, 1H), 8.69 (d, *J* = 8.4 Hz, 1H), 8.66 (d, *J* = 8.5 Hz, 1H), 7.87 (d, *J* = 8.3 Hz, 1H), 7.78 – 7.76 (m, 2H), 7.68 (d, *J* = 1.3 Hz, 1H), 7.62 (d, *J* = 1.5 Hz, 1H), 7.50 – 7.31 (m, 12H), 6.17 – 6.09 (m, 1H), 5.51 – 5.47 (m, 1H), 5.41 – 5.39 (m, 1H), 5.26 (s, 2H), 5.21 (s, 2H), 4.74 (d, *J* = 5.4 Hz, 2H), 3.92 (s, 3H). ¹³C **NMR (126 MHz, CDCl₃)** δ 166.79, 164.39, 163.04, 152.21, 147.83,

146.68, 142.21, 139.51, 135.73, 134.96, 132.36, 131.11, 130.74, 129.15, 129.11, 128.93, 128.66, 128.00, 127.40, 126.07, 125.33, 123.86, 119.70, 119.29, 118.96, 118.83, 118.29, 114.51, 112.23, 111.56, 71.76, 71.51, 69.93, 52.28. **HRMS (ESI)** for: $C_{39}H_{33}N_3O_9$ [M+Na]⁺ m/z 710.2115 (calc), 710.2103 (found).

Methyl 4-(3-(benzyloxy)-4-(3-(benzyloxy)-4-nitrobenzamido)benzamido)-3-hydroxy benzoate (11b)

Compound **11b** was synthesized according to the standard procedure E by stirring compound **11a** (160 mg, 0.2 mmol, 1 eq.), Pd(PPh3₃)₄ (10 mol%), sodium toluenesulfinate (83mg, 0.4 mmol, 2 eq.) in anhydrous CHCl₃ (10 ml) for 12 hrs. The residue was purified by column chromatography eluting with 5% THF in CH₂Cl₂ to yield the title compound **11b** as an off-white solid (80mg, 53% yield). **MP**: 220-222 °C. ¹**H NMR (500 MHz, DMSO)** δ 10.44 (s, 1H), 9.99 (s, 1H), 9.52 (s, 1H), 8.06 (d, *J* = 8.3 Hz, 1H), 8.00 (d, *J* = 8.4 Hz, 1H), 8.01 – 7.94 (m, 2H), 7.78 (d, *J* = 1.7 Hz, 1H), 7.71 – 7.62 (m, 2H), 7.69 – 7.65 (m, 12H), 5.36 (s, 2H), 5.34 (s, 2H), 3.84 (s, 3H). ¹³C NMR (176 MHz,

DMSO) δ 165.93, 164.54, 163.69, 150.67, 150.47, 148.41, 141.45, 139.35, 136.75, 135.68, 131.69, 130.70, 130.17, 128.63, 128.47, 128.28, 127.91, 127.56, 127.40, 125.91, 125.17, 124.19, 122.66, 120.53, 120.19, 120.03, 115.71, 114.66, 112.33, 70.84, 70.11, 52.06. **HRMS (ESI)** for: $C_{36}H_{29}N_{3}O_{9}$ [M+Na]⁺ m/z 670.1802 (calc), 670.1771 (found).

Methyl4-(3-(benzyloxy)-4-(3-(benzyloxy)-4-nitrobenzamido)benzamido)-3-(pentan-3-yloxy) benzoate (11c)

Compound **11c** was synthesized according to the standard procedure A by heating compound **11b** (74mg, 0.1 mmol, 1 eq.), 2-bromopentane (51mg, 0.3 mmol, 3 eq.) and K₂CO₃ (31mg, 0.2 mmol, 2 eq.) in DMF (10 ml) for 12 hrs. The residue was purified by flash column chromatography eluting with 5% diethyl ether in CH₂Cl₂ to yield the title compound **11c** as an off-white solid (47mg, 57% yield). **MP**: 145-147 °C. ¹**H NMR (500 MHz, CDCl₃)** δ 8.92 (s, 1H), 8.75 (s, 1H), 8.66 (d, *J* = 8.4 Hz, 1H), 8.63 (d, *J* = 8.5 Hz, 1H), 7.86 (d, *J* = 8.3 Hz, 1H), 7.77 (d, *J* = 1.7 Hz, 1H), 7.73 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.67 (d, *J* = 1.4 Hz, 1H), 7.60 (d, *J* = 1.5 Hz, 1H), 7.46 – 7.31 (m, 12H), 5.26 (s, 2H), 5.21 (s, 2H), 4.42 (p, *J* = 5.7 Hz, 1H), 3.92 (s, 3H), 1.84 – 1.75 (m, 4H), 1.01 (t, *J* = 7.4 Hz, 6H). ¹³C **NMR (126 MHz, CDCl₃)** δ 166.93, 164.29, 163.08,

152.21, 147.89, 146.46, 142.24, 139.51, 135.72, 134.96, 133.03, 131.06, 130.92, 129.15, 129.12, 128.94, 128.67, 128.00, 127.40, 126.08, 125.29, 123.35, 119.43, 119.33, 118.72, 118.30, 114.52, 113.26, 111.60, 81.78, 71.75, 71.51, 29.84, 26.12, 9.64. **HRMS (ESI)** for: $C_{41}H_{39}N_3O_9$ [M+H]⁺ m/z 718.2764 (calc), 718.2797 (found).

Methyl 3-hydroxy-4-(4-(3-hydroxy-4-nitrobenzamido)-3-((3-methylbut-2-en-1-yl)oxy) benzamido)benzoate (12)

Compound **12** was synthesized according to the standard procedure E by refluxing compound **8** (300mg, 0.5 mmol, 1 eq.), Pd(PPh₃)₄ (10 mol%), sodium toluenesulfinate (185mg, 1.0 mmol, 2 eq.) in anhydrous CHCl₃ (15 ml) for 3 hrs. The residue was purified by column chromatography eluting with 10% THF in CH₂Cl₂ to yield the title compound **12** as a yellow solid (226mg, 81% yield). **MP**: 230-232 °C. ¹**H NMR (500 MHz, DMSO)** δ 11.37 (s broad, 1H), 10.43 (s, 1H), 9.72 (s, 1H), 9.48 (s, 1H), 8.07 – 7.99 (m, 3H), 7.67 – 7.61 (m, 3H), 7.53 – 7.38 (m, 3H), 5.47 (t, *J* = 5.8 Hz, 1H), 4.76 (d, *J* = 6.1 Hz, 2H), 3.83 (s, 3H), 1.75 (s, 6H). ¹³C **NMR (176 MHz, DMSO)** δ 165.92,

164.62, 163.79, 151.61, 149.95, 148.32, 139.91, 138.99, 137.27, 131.22, 130.74, 130.28, 125.83, 125.48, 123.26, 122.54, 120.54, 119.89, 119.73, 118.42, 117.87, 115.70, 112.02, 65.75, 52.04, 25.51, 18.21. **HRMS (ESI)** for: C₂₇H₂₅N₃O₉ [M+Na]⁺ m/z 558.1489 (calc), 558.1483 (found).

Methyl 3-isopropoxy-4-(4-(3-isopropoxy-4-nitrobenzamido)-3-((3-methylbut-2-en-1-yl)oxy)benzamido)benzoate (12a)

Compound **12a** was synthesized according to the standard procedure A by heating compound **12** (400mg, 0.7 mmol, 1 eq.), 2-bromopropane (638mg, 5.2 mmol, 7 eq.) and K₂CO₃ (309mg, 2.2 mmol, 3 eq.) in DMF (20 ml) for 12 hrs. The residue was purified by flash column chromatography eluting with 5% diethyl ether in CH₂Cl₂ to yield the title compound **12a** as an off-white solid (350mg, 75% yield). **MP**: 150-152 °C. ¹H **NMR (500 MHz, CDCl₃)** δ 8.87 (s, 1H), 8.75 (s, 1H), 8.65 (d, *J* = 8.4 Hz, 1H), 8.62 (d, *J* = 8.5 Hz, 1H), 7.87 (d, *J* = 8.3 Hz, 1H), 7.73 (dd, *J* = 8.5, 1.4 Hz, 1H), 7.67 (d, *J* = 1.1 Hz, 1H), 7.66 (d, *J* = 1.5 Hz, 1H), 7.61 (d, *J* = 1.3 Hz, 1H), 7.43 (dd, *J* = 8.4, 1.5 Hz, 1H), 7.39 (dd, *J* = 8.3, 1.4 Hz, 1H), 5.57 – 5.50 (m, 1H), 4.83 – 4.73 (m, 4H), 3.92 (s, 3H), 1.82 (s, 3H), 1.79 (s, 3H), 1.44 (m, 12H). ¹³C **NMR (126 MHz, CDCl₃)** δ

166.91, 164.48, 163.50, 151.64, 147.84, 145.93, 143.05, 139.89, 139.55, 133.08, 131.00, 130.71, 125.89, 125.23, 123.45, 119.13, 119.02, 118.75, 118.49, 117.71, 115.46, 113.27, 111.16, 73.27, 72.00, 66.22, 52.24, 26.01, 22.36, 21.95, 18.51. **HRMS (APCI)** for: $C_{33}H_{37}N_3O_9$ [M+H]⁺ m/z 620.2608 (calc), 620.2623 (found).

Methyl 4-(3-hydroxy-4-(3-isopropoxy-4-nitrobenzamido)benzamido)-3-isopropoxybenzoate (12b)

Compound **12b** was synthesized according to the standard procedure D by refluxing compound **12a** (250mg, 0.4 mmol, 1 eq.), CeCl₃•7H₂O (298mg, 1.2 mmol, 3 eq.) and NaI (175mg, 1.2 mmol, 3 eq.) in anhydrous MeCN (15 ml) for 5 hrs. The residue was purified by column chromatography eluting with 5% THF in CH₂Cl₂ to yield the title compound **12b** as a yellow solid (157mg, 70% yield). **MP**: 250-252 °C. ¹**H NMR (500 MHz, DMSO)** δ 10.37 (s, 1H), 9.87 (s, 1H), 9.24 (s, 1H), 8.26 (d, *J* = 8.4 Hz, 1H), 7.97 (d, *J* = 8.3 Hz, 1H), 7.90 (d, *J* = 8.3 Hz, 1H), 7.87 (d, *J* = 1.2 Hz, 1H), 7.66 – 7.62 (m, 2H), 7.59 (d, *J* = 1.7 Hz, 1H), 7.50 (d, *J* = 2.0 Hz, 1H), 7.45 (dd, *J* = 8.4, 2.0 Hz, 1H), 4.97 (hept, *J* = 6.0 Hz, 1H), 3.86 (s, 3H), 1.37 (d, *J*= 6.0 Hz, 6H), 1.34 (d *J* = 6.0Hz, 6H). ¹³C **NMR (126 MHz, DMSO)** δ 165.85, 164.26, 163.88, 149.76,

149.55, 147.39, 142.39, 139.15, 132.86, 131.44, 129.02, 125.34, 124.81, 124.21, 122.20, 120.96, 119.75, 117.92, 115.47, 114.66, 113.66, 72.55, 71.56, 52.12, 21.70, 21.61. **HRMS (ESI)** for: $C_{28}H_{29}N_3O_9$ [M+H]⁺ m/z 552.1982 (calc), 552.1954 (found).

Methyl 3-isopropoxy-4-(4-(3-isopropoxy-4-nitrobenzamido)-3-(pentan-3yloxy)benzamido) benzoate (12c)

Compound **12c** was synthesized according to the standard procedure A by heating compound **12b** (50mg, 0.09 mmol, 1 eq.), 2-bromopentane (41mg, 0.2 mmol, 3 eq.) and K_2CO_3 (19mg, 0.1 mmol, 1.5 eq.) in DMF (5 ml) for 12 hrs. The residue was purified by flash column chromatography eluting with 5% diethyl ether in CH₂Cl₂ to yield the title compound **12c** as an off-white solid (43mg, 76% yield). **MP**: 135-137 °C. ¹**H NMR (500 MHz, CDCl₃)** δ 8.86 (s, 1H), 8.82 (s, 1H), 8.66 (d, *J* = 8.4 Hz, 1H), 8.62 (d, *J* = 8.5 Hz, 1H), 7.87 (d, *J* = 8.3 Hz, 1H), 7.73 (dd, *J* = 8.5, 1.2 Hz, 1H), 7.69 (s, 1H), 7.62 (d, *J* = 1.0 Hz, 1H), 7.61 (s, 1H), 7.42 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.36 (dd, *J* = 8.3, 1.1 Hz, 1H), 4.87 – 4.73 (m, 2H), 4.46 (p, *J* = 5.7 Hz, 1H), 3.91 (s, 3H), 1.84 – 1.60 (m, 4H), 1.45-1.44 (m, 12H), 1.01 (t, *J* = 7.4 Hz, 6H). ¹³C **NMR (126 MHz, CDCl₃)** δ 166.93,

164.57, 163.38, 151.73, 147.33, 145.92, 143.07, 139.60, 133.09, 131.59, 130.76, 125.98, 125.25, 123.47, 119.24, 118.87, 118.74, 117.35, 115.51, 113.27, 112.15, 82.00, 73.30, 71.98, 52.24, 26.16, 22.36, 21.97, 9.68. **HRMS (ESI)** for: $C_{33}H_{39}N_3O_9$ [M+H]⁺ m/z 622.2764 (calc), 622.2731 (found).

Methyl 4-(3-(benzyloxy)-4-(3-isopropoxy-4-nitrobenzamido)benzamido)-3isopropoxybenzoate (12d)

Compound **12d** was synthesized according to the standard procedure A by heating compound **12b** (50mg, 0.09 mmol, 1 eq.), benzyl bromide (20mg, 0.1 mmol, 1.3 eq.) and K₂CO₃ (16mg, 0.1 mmol, 1.3 eq.) in DMF (5 ml) for 5 hrs. The residue was purified by flash column chromatography eluting with 5% diethyl ether in CH₂Cl₂ to yield the title compound **12d** as an off-white solid (49mg, 84% yield). **MP**: 213-215 °C. ¹**H NMR (500 MHz, CDCl₃)** δ 8.87 (s, 1H), 8.75 (s, 1H), 8.68 (d, *J* = 8.4 Hz, 1H), 8.62 (d, *J* = 8.5 Hz, 1H), 7.78 – 7.77 (m, 2H), 7.73 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.61 (d, *J* = 1.5 Hz, 1H), 7.58 (d, *J* = 1.3 Hz, 1H), 7.50 – 7.39 (m, 6H), 7.28 (dd, *J* = 8.3, 1.6 Hz, 1H), 5.26 (s, 2H), 4.78 (hept, *J* = 6.1 Hz, 1H), 4.67 (hept, *J* = 6.1 Hz, 1H), 3.92 (s, 3H), 1.46 (d, *J* = 6.0 Hz, 6H), 1.37 (d, *J* = 6.1 Hz, 6H). ¹³C **NMR (126 MHz**,

CDCl₃) δ 166.92, 164.33, 163.35, 151.60, 147.87, 145.95, 143.08, 139.23, 135.72, 133.03, 131.12, 130.84, 129.14, 129.07, 128.08, 125.84, 125.30, 123.47, 119.51, 119.28, 118.80, 117.74, 115.24, 113.29, 111.56, 73.21, 72.03, 71.73, 52.26, 22.38, 21.89. **HRMS (APCI)** for: $C_{35}H_{35}N_3O_9$ [M+H]⁺ m/z 642.2451 (calc), 642.2441 (found).

Methyl 4-(4-(3-(benzyloxy)-4-nitrobenzamido)-3-hydroxybenzamido)-3-hydroxybenzoate (13a)

Compound **13a** was synthesized according to the standard procedure E by stirring compound **9b** (150mg, 0.2 mmol, 1 eq.), $Pd(PPh_3)_4$ (10 mol%), and sodium toluenesulfinate (90mg, 0.5 mmol, 2 eq.) in anhydrous CHCl₃:THF (10:1 ml) for 12 hrs. The residue was purified by column chromatography eluting with 10% THF in CH₂Cl₂ to yield the title compound **13a** as an off-white solid (84mg, 60% yield). **MP**: 245-247 °C. ¹**H NMR (500 MHz, DMSO)** δ 10.49 (s, 1H), 10.36 (s, 1H), 9.86 (s, 1H), 9.36 (s, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 8.04 (d, *J* = 8.3 Hz, 1H), 7.99 (s, 1H), 7.90 (d, *J* = 8.3 Hz, 1H), 7.69 (d, *J* = 8.6 Hz, 1H), 7.57 – 7.47 (m, 6H), 7.45 – 7.35 (m, 3H), 5.43 (s, 2H), 3.83 (s, 3H). ¹³C NMR (176 MHz, DMSO) δ 165.92, 164.51, 163.71, 150.62, 149.42, 147.80, 141.40, 139.34, 135.79, 131.39, 130.91, 128.89, 128.62, 128.23, 127.52, 125.51,

125.10, 123.98, 121.63, 120.68, 120.07, 118.19, 115.52, 114.81, 114.76, 70.79, 52.03. **HRMS** (ESI) for: $C_{29}H_{23}N_3O_9$ [M+H]⁺ m/z 558.1512 (calc), 558.1504 (found).

Methyl 4-(4-(3-(benzyloxy)-4-nitrobenzamido)-3-isopropoxybenzamido)-3-isopropoxybenzoate (13b)

Compound **13b** was synthesized according to the standard procedure A by heating compound **13a** (40mg, 0.07 mmol, 1 eq.), 2-bromopropane (52mg, 0.4 mmol, 6 eq.) and K₂CO₃ (29mg, 0.2 mmol, 3 eq.) in DMF (5 ml) for 12 hrs. The residue was purified by flash column chromatography eluting with 5% diethyl ether in CH₂Cl₂ to yield the title compound **13b** as an off-white solid (31mg, 67% yield). **MP**: 167-169 °C. ¹**H NMR (500 MHz, CDCl₃)** δ 8.86 (s, 1H), 8.77 (s, 1H), 8.64 - 8.61 (m, 2H), 7.97 (d, *J* = 8.3 Hz, 1H), 7.80 (s, 1H), 7.73 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.63 (d, *J* = 1.2 Hz, 1H), 7.61 (d, *J* = 1.2 Hz, 1H), 7.52 - 7.46 (m, 2H), 7.43 - 7.34 (m, 5H), 5.34 (s, 2H), 4.86 - 4.74 (m, 2H), 3.92 (s, 3H), 1.48 - 1.43 (m, 12H). ¹³**C NMR (126 MHz, CDCl₃)** δ 166.89, 164.45, 163.11, 152.32, 146.79, 145.90, 142.20, 139.88, 135.03, 133.06, 131.40, 130.77,

128.96, 128.64, 127.26, 126.16, 125.23, 123.44, 119.35, 118.87, 118.71, 117.87, 114.94, 113.24,

111.98, 72.08, 71.97, 71.55, 52.23, 22.35, 22.33. **HRMS (APCI)** for: C₃₅H₃₅N₃O₉ [M+H]⁺ m/z 642.2451 (calc), 642.2444 (found).

Methyl 4-(4-(3-(benzyloxy)-4-nitrobenzamido)-3-(naphthalen-2-yl-methoxy)benzamido)-3-(naphthalen-2-ylmethoxy)benzoate **(13c)**

Compound **13c** was synthesized according to the standard procedure A by heating compound **13a** (44mg, 0.07 mmol, 1 eq.), 2- (bromomethyl)naphthalene (69mg, 0.3 mmol, 4 eq.) and K₂CO₃ (38mg, 0.2 mmol, 3.5 eq.) in DMF (5ml) for 12 hrs. The residue was purified by flash column chromatography eluting with 5% diethyl ether in CH₂Cl₂ to yield the title compound **13c** as a yellow solid (20mg, 30% yield). **MP**: 219-221 °C. ¹**H NMR (500 MHz, CDCl₃)** δ 8.87 (s, 1H), 8.71 – 8.65 (m, 2H), 8.55 (d, *J* = 8.4 Hz, 1H), 7.94 (s, 1H), 7.91 – 7.72 (m, 10H), 7.66 (d, *J* = 1.7 Hz, 1H), 7.61 – 7.60 (m, 2H), 7.53 – 7.32 (m, 11H), 7.21 (dd, *J* = 8.3, 1.6 Hz, 1H), 5.39 (s, 2H), 5.19 (s, 2H), 5.11 (s, 2H), 3.93 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.81,

164.31, 162.99, 152.16, 147.79, 147.08, 142.16, 139.48, 134.91, 133.45, 133.41, 133.39, 133.34, 132.96, 132.57, 131.26, 130.56, 129.05, 129.03, 128.91, 128.61, 128.08, 128.03, 128.00, 127.46, 127.34, 127.25, 126.97, 126.94, 126.86, 126.73, 126.04, 125.44, 125.30, 124.18, 120.37, 119.40, 118.92, 118.19, 114.42, 112.58, 111.32, 72.08, 71.84, 71.42, 52.34. **HRMS (APCI)** for: $C_{51}H_{39}N_{3}O_{9}$ [M+H]⁺ m/z 838.2764 (calc), 838.2793 (found).

Methyl 3-hydroxy-4-(3-hydroxy-4-(3-isopropoxy-4-nitrobenzamido)benzamido)benzoate (14a)

Compound **14a** was synthesized according to the standard procedure E by stirring compound **10b** (130mg, 0.2 mmol, 1 eq.), Pd(PPh₃)₄ (10 mole%) and sodium toluenesulfinate (84mg, 0.4 mmol, 2 eq.) in anhydrous CHCl₃:THF (9:1 ml) for 12 hrs. The residue was purified by column chromatography eluting with 10% THF in CH₂Cl₂ to yield the title compound **14a** as an off-white solid (57mg, 48% yield). **MP**: 241-243 °C. ¹**H NMR (500 MHz, DMSO)** δ 10.48 (s, 1H), 10.31 (s, 1H), 9.87 (s, 1H), 9.36 (s, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.96 (d, *J* = 8.3 Hz, 1H), 7.88 (d, *J* = 8.2 Hz, 2H), 7.64 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.54 - 7.47 (m, 4H), 4.97 (hept, *J* = 6.0 Hz, 1H), 3.83 (s, 3H), 1.34 (d, *J* = 6.0 Hz, 6H). ¹³C **NMR (126 MHz, DMSO)** δ 165.89, 164.49, 163.85, 149.75, 149.45, 147.77, 142.39, 139.14, 131.38, 130.89, 128.92, 125.49, 124.79, 124.09, 121.58, 120.66, 119.74, 118.17,

115.52, 115.47, 114.80, 72.54, 51.99, 21.61. **HRMS (APCI)** for: C₂₅H₂₃N₃O₉ [M+H]⁺ m/z 510.1512 (calc), 510.1486 (found).

Methyl 4-(4-(3-isopropoxy-4-nitrobenzamido)-3-(pentan-3-yloxy)benzamido)-3-(pentan-3-yloxy)benzoate **(14b)**

Compound **14b** was synthesized according to the standard procedure A by heating compound **14a** (30mg, 0.05 mmol, 1 eq.), 2-bromopentane (53mg, 0.3 mmol, 6 eq.) and K₂CO₃ (24mg, 0.1 mmol, 3 eq.) in DMF (5 ml) for 12 hrs. The residue was purified by flash column chromatography eluting with 5% diethyl ether in CH₂Cl₂ to yield the title compound **14b** as an off-white solid (20mg, 52% yield). **MP**: 153-155 °C. ¹**H NMR (500 MHz, CDCl₃)** δ 8.91 (s, 1H), 8.83 (s, 1H), 8.69 – 8.59 (m, 2H), 7.88 (d, *J* = 8.3 Hz, 1H), 7.72 (dd, *J* = 8.5, 1.3 Hz, 1H), 7.69 (d, *J* = 0.7 Hz, 1H), 7.63 (d, *J* = 1.0 Hz, 1H), 7.59 (d, *J* = 1.0 Hz, 1H), 7.40 (dd, *J* = 8.5, 1.3 Hz, 1H), 7.36 (dd, *J* = 8.3, 1.3 Hz, 1H), 4.82 (hept, *J* = 6 Hz, 1H), 4.50 – 4.36 (m, 2H), 3.92 (s, 3H), 1.87 – 1.72 (m, 8H), 1.45 (d, *J* = 6.1 Hz, 6H), 1.03 – 0.99 (m, 12H). ¹³**C NMR (126 MHz, CDCl₃)** δ 166.95, 164.54,

163.39, 151.72, 147.33, 146.44, 143.06, 139.58, 133.09, 131.58, 130.77, 125.98, 125.22, 123.34, 119.24, 118.76, 118.67, 117.33, 115.49, 113.24, 112.14, 81.97, 81.74, 73.30, 52.25, 26.13, 26.11, 21.97, 9.65, 9.63. **HRMS (APCI)** for: $C_{35}H_{43}N_3O_9$ [M+H]⁺ m/z 650.3077 (calc), 650.3078 (found).

Methyl 3-ethoxy-4-(3-ethoxy-4-(3-isopropoxy-4-nitrobenzamido)benzamido)benzoate (14c)

Compound **14c** was synthesized according to the standard procedure A by heating compound **14a** (30mg, 0.05 mmol, 1 eq.), iodoethane (54mg, 0.3 mmol, 6 eq.) and K_2CO_3 (24mg, 0.1 mmol, 3 eq.) in DMF (5 ml) for 12 hrs. The residue was purified by flash column chromatography eluting with 5% diethyl ether in CH₂Cl₂ to yield the title compound **14c** as an off-white solid (18mg, 54% yield). **MP**: 205-207 °C. ¹H **NMR (500 MHz, CDCl₃)** δ 8.83 (s, 1H), 8.74 (s, 1H), 8.64 (d, J = 8.4 Hz, 1H), 8.61 (d, J = 8.5 Hz, 1H), 7.87 (d, J = 8.3 Hz, 1H), 7.75 (dd, J = 8.5, 1.7 Hz, 1H), 7.69 (d, J = 1.5 Hz, 1H), 7.38 (dd, J = 8.3, 1.7 Hz, 1H), 4.83 (hept, J = 6 Hz, 1H), 4.31 – 4.23 (m, 4H), 3.92 (s, 3H), 1.55 – 1.52 (m,

6H), 1.45 (d, *J* = 6.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.91, 164.55, 163.48, 151.70, 147.82, 147.03, 143.06, 139.54, 132.22, 130.79, 130.73, 125.92, 125.27, 123.55, 119.13, 119.09,

118.61, 117.46, 115.57, 111.70, 110.72, 73.29, 64.89, 64.81, 52.25, 21.96, 14.97, 14.95. **HRMS** (ESI) for: C₂₉H₃₁N₃O₉ [M+H]⁺ m/z 566.2138 (calc), 566.2134(found).

Methyl 3-hydroxy-4-(3-hydroxy-4-(3-hydroxy-4-nitrobenzamido)benzamido)benzoate (15)

Compound **15** was synthesized according to the standard procedure D by refluxing compound **12** (100mg, 0.2 mmol, 1 eq.), CeCl₃•7H₂O (277mg, 1.1 mmol, 4 eq.) and Nal (126mg, 0.8 mmol, 3 eq.) in anhydrous MeCN (15 ml) for 5 hrs. The residue was purified by column chromatography eluting with 20% THF in CH₂Cl₂ to yield the title compound **15** as a yellow solid (57mg, 65% yield). **MP**: 269-271°C. ¹H **NMR (500 MHz, DMSO)** δ 11.38 (s, 1H), 10.50 (s, 1H), 10.38 (s, 1H), 9.73 (s, 1H), 9.34 (s, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 8.00 (d, *J* = 8.5 Hz, 1H), 7.95 (d, *J* = 8.3 Hz, 1H), 7.65 (s, 1H), 7.53 – 7.48 (m, 5H), 3.83 (s, 3H). ¹³C **NMR (176 MHz, DMSO)** δ 165.93, 164.51, 163.73, 151.54, 149.05, 147.76, 139.83, 138.97, 131.16, 130.93, 129.07, 125.48, 125.45, 123.28, 121.56, 120.69, 118.37,

118.27, 118.03, 115.51, 114.63, 52.03. **HRMS (ESI)** for: $C_{22}H_{17}N_3O_9 [M+H]^+ m/z$ 468.1043 (calc), 468.1052 (found).

Methyl 3-isopropoxy-4-(3-isopropoxy-4-(3-isopropoxy-4-nitrobenzamido)benzamido) benzoate (**15a**)

Compound **15a** was synthesized according to the standard procedure A by heating compound **15** (50mg, 0.1 mmol, 1 eq.), 2-bromopropane (130mg, 1.0 mmol, 10 eq. 59mg) and K₂CO₃ (59mg, 0.4 mmol, 4 eq.) in DMF (5 ml) for 12 hrs. The residue was purified by flash column chromatography eluting with 5% diethyl ether in CH₂Cl₂ to yield the title compound **15a** as a yellow solid (40mg, 63% yield). **MP**: 161-163 °C. ¹**H NMR (500 MHz, CDCl₃)** δ 8.87 (s, 1H), 8.77 (s, 1H), 8.66 (d, *J* = 8.4 Hz, 1H), 8.62 (d, *J* = 8.5 Hz, 1H), 7.88 (d, *J* = 8.3 Hz, 1H), 7.73 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.70 (d, *J* = 1.6 Hz, 1H), 7.64 (d, *J* = 1.8 Hz, 1H), 7.61 (d, *J* = 1.7 Hz, 1H), 7.42 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.37 (dd, *J* = 8.3, 1.7 Hz, 1H), 4.87 – 4.74 (m, 3H), 3.92 (s, 3H), 1.47 – 1.45 (m, 18H). ¹³C NMR (126 MHz, CDCl₃) δ 166.92, 164.50, 163.40, 151.71, 146.77, 145.92, 143.06,

139.59, 133.08, 131.50, 130.73, 125.94, 125.24, 123.46, 119.28, 118.90, 118.73, 117.40, 115.55, 113.26, 111.99, 73.28, 72.06, 71.99, 52.24, 22.36, 22.34, 21.97. **HRMS (ESI)** for: C₃₁H₃₅N₃O₉ [M+H]⁺ m/z 594.2451 (calc), 594.2426 (found).

Methyl 3-(benzyloxy)-4-(3-(benzyloxy)-4-(3-(benzyloxy)-4-nitrobenzamido)benzamido)benzoate (15b)

Compound **15b** was synthesized according to the standard procedure A by heating compound **15** (49mg, 0.1 mmol, 1 eq.), benzyl bromide (71mg, 0.4 mmol, 4 eq.) and K₂CO₃ (58mg, 0.4 mmol, 4 eq.) in DMF (5 ml) for 12 hrs. The residue was purified by flash column chromatography eluting with 5% diethyl ether in CH₂Cl₂ to yield the title compound **15b** as an off-white solid (49mg, 64% yield). **MP**: 199-201 °C. ¹H **NMR (500 MHz, CDCl₃)** δ 8.83 (s, 1H), 8.72 (s, 1H), 8.65 (d, *J* = 8.5 Hz, 1H), 8.57 (d, *J* = 8.4 Hz, 1H), 7.85 (d, *J* = 8.3 Hz, 1H), 7.79 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.73 (d, *J* = 1.7 Hz, 1H), 7.69 (d, *J* = 1.6 Hz, 1H), 7.68 (d, *J* = 1.8 Hz, 1H), 7.49 – 7.33 (m, 16H), 7.29 (dd, *J* = 8.3, 1.7 Hz, 1H), 5.23 (s, 2H), 5.19 (s, 2H), 5.14 (s, 2H), 3.93 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ

166.79, 164.23, 162.99, 152.22, 147.73, 147.01, 142.22, 139.48, 136.01, 135.68, 134.96, 132.52, 131.10, 130.49, 129.14, 129.09, 128.98, 128.94, 128.67, 128.12, 128.00, 127.40, 126.07, 125.38, 124.09, 120.02, 119.64, 119.25, 118.81, 118.27, 114.48, 112.48, 111.17, 71.72, 71.65, 71.50, 52.31. **HRMS (APCI)** for: C₄₃H₃₅N₃O₉ [M+H]⁺ m/z 738.2451 (calc), 738.2475 (found).

Methyl 4-(4-(4-amino-3-isopropoxybenzamido)-3-(isopentyloxy)benzamido)-3-propoxy benzoate (16a)

Compound **16a** was synthesized according to the standard procedure C by stirring compound **10a** (20mg, 0.03 mmol, 1 eq), Pd/C (10 mol%) in anhydrous EtOAc:THF mixture (4:1 ml) for 12 hrs. The residue was purified by flash column chromatography eluting with 5% diethyl ether in CH₂Cl₂ to yield the title compound **16a** as a white solid (8mg, 63% yield). **MP**: 190-192 °C. ¹H **NMR (500 MHz, CDCl₃)** δ 8.86 (s, 1H), 8.70 – 8.67 (m, 2H), 8.62 (d, *J* = 8.5 Hz, 1H), 7.74 (dd, *J* = 8.5, 1.4 Hz, 1H), 7.59 – 7.58 (m, 2H), 7.45 (d, *J* = 1.4 Hz, 1H), 7.42 (d, *J* = 8.4 Hz, 1H), 7.28 – 7.27 (m, 1H), 6.73 (d, *J* = 7.3 Hz, 1H), 4.69 (hept, *J* = 6.0 Hz, 1H), 4.22 – 4.20 (m, 4H), 4.13 (t, *J* = 6.4 Hz, 2H), 3.91 (s, 3H), 1.97 – 1.79 (m, 5H), 1.40 (d, *J* = 6.0 Hz, 6H), 1.12 (t, 3H),

1.02 (d, J = 6.5 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.98, 165.37, 164.85, 147.73, 147.12, 145.00, 141.64, 132.51, 132.15, 129.28, 125.05, 124.14, 123.57, 120.12, 119.14, 118.58, 118.50, 113.74, 112.51, 111.69, 110.45, 71.04, 70.59, 67.58, 52.22, 38.12, 25.54, 22.78, 22.73, 22.35, 10.80. HRMS (ESI) for: C₃₃H₄₁N₃O₇ [M+Na]⁺ m/z 614.2843 (calc), 614.2862 (found).

Methyl 4-(4-(4-amino-3-isopropoxybenzamido)-3-(pentan-3-yloxy)benzamido) -3-propoxybenzoate (16b)

Compound **16b** was synthesized according to the standard procedure C by stirring compound **10c** (20mg, 0.03 mmol, 1 eq), Pd/C (10 mol %) in anhydrous EtOAc:THF mixture (4:1 ml) for 12 hrs. The residue was purified by flash column chromatography eluting with 5% diethyl ether in CH_2Cl_2 to yield the title compound **16b** as a white solid (14mg, 75% yield). **MP**: 168-170 °C. ¹H **NMR (500 MHz, CDCl_3)** δ 8.85 (s, 1H), 8.78 (s, 1H), 8.69 (d, *J* = 8.4 Hz, 1H), 8.62 (d, *J* = 8.5 Hz, 1H), 7.74 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.63 (d, *J* = 1.5 Hz, 1H), 7.61 (d, *J* = 1.3 Hz, 1H), 7.45 (d, *J* = 1.7 Hz, 1H), 7.39 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.28 – 7.26 (m, 1H), 6.74 (d, *J* = 8.1 Hz, 1H), 4.68 (hept, *J* = 6.0 Hz, 1H), 4.44 (p, *J* = 5.7 Hz, 1H), 4.22 (s, 2H), 4.13 (t, *J* = 6.5 Hz, 2H), 3.91 (s, 3H),

1.97 – 1.90 (m, 2H), 1.82 – 1.76 (m, 4H), 1.40 (d, J = 6.1 Hz, 6H), 1.13 (t, J = 7.4 Hz, 3H), 1.01 (t, J = 7.5 Hz, 6H).¹³**C NMR (176 MHz, CDCl₃)** δ 166.99, 165.33, 164.91, 147.10, 147.04, 144.98, 141.57, 132.93, 132.50, 129.23, 125.03, 124.19, 123.55, 120.04, 118.93, 118.72, 118.46, 113.79, 112.39, 111.99, 111.67, 81.68, 70.99, 70.58,52.23, 26.15, 22.71, 22.35, 10.80, 9.67. **HRMS (ESI)** for: C₃₃H₄₁N₃O₇ [M+Na]⁺ m/z 614.2843 (calc), 614.2866 (found).

Methyl 4-(4-(4-amino-3-isopropoxybenzamido)-3-(isopentyloxy)benzamido)-3isopropoxybenzoate (16c)

Compound **16c** was synthesized according to the standard procedure C by stirring compound **12a** (10mg, 0.01 mmol, 1 eq.), Pd/C (10 mol%) in anhydrous EtOAc:THF mixture (4:1 ml) for 12 hrs. The residue was purified by column chromatography eluting with 5% diethyl ether in CH_2Cl_2 to yield the title compound **16c** as a white solid (7mg, 74% yield). **MP**: 193-195 °C. ¹**H NMR (500 MHz, CDCl_3)** δ 8.87 (s, 1H), 8.69 – 8.67 (m, 2H), 8.62 (d, *J* = 8.5 Hz, 1H), 7.73 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.61 – 7.60 (m, 2H), 7.45 (d, *J* = 1.7 Hz, 1H), 7.41 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.28 – 7.27 (m, 1H), 6.74 (d, *J* = 8.1 Hz, 1H), 4.79 – 4.65 (m, 2H), 4.22 (t, *J* = 6.6 Hz, 2H), 3.91 (s, 3H), 1.92 – 1.84 (m, 1H), 1.82 – 1.78 (m, 2H), 1.45 (d, *J* = 6.1 Hz, 6H), 1.41 (d, *J* = 6.0 Hz,

6H), 1.02 (d, J = 6.5 Hz, 6H). ¹³C NMR (176 MHz, CDCl₃) δ 167.00, 165.38, 164.83, 147.72, 145.90, 144.99, 141.62, 133.29, 132.10, 129.32, 125.01, 124.15, 123.48, 120.13, 119.10, 118.68, 118.58, 113.74, 113.26, 112.49, 110.48, 71.99, 71.03, 67.56, 52.24, 38.09, 25.54, 22.78, 22.36, 22.35. HRMS (ESI) for: C₃₃H₄₁N₃O₇ [M+Na]⁺ m/z 614.2843 (calc), 614.2828 (found).

NMR Data

Figure S1. ¹H NMR spectrum (500 MHz) of compound 2 in $CDCI_3$ at 298 K

Figure S2. 13 C NMR spectrum (126 MHz) of compound 2 in CDCl₃ at 298 K

Figure S3. ¹H NMR spectrum (500 MHz) of compound 3 in CDCl₃ at 298 K

Figure S4. 13 C NMR spectrum (126 MHz) of compound **3** in CDCl₃ at 298 K

Figure S5. 1 H NMR spectrum (500 MHz) of compound 4 in CDCl₃ at 298 K

Figure S6. ¹³C NMR spectrum (126 MHz) of compound 4 in CDCl₃ at 298 K

Figure S7. ¹H NMR spectrum (500 MHz) of compound 5 in $CDCl_3$ at 298 K

Figure S8. 13 C NMR spectrum (126 MHz) of compound 5 in CDCl₃ at 298 K

Figure S9. ¹H NMR spectrum (500 MHz) of compound **6** in CDCl₃ at 298 K

Figure S10. ¹³C NMR spectrum (126 MHz) of compound 6 in CDCl₃ at 298 K

Figure S11. ¹H NMR spectrum (500 MHz) of compound 7 in $CDCl_3$ at 298 K

Figure S12. 13 C NMR spectrum (126 MHz) of compound 7 in CDCl₃ at 298 K

Figure S13. ¹H NMR spectrum (500 MHz) of compound 8 in CDCl₃ at 298 K

Figure S14. ¹³C NMR spectrum (126 MHz) of compound 8 in CDCl₃ at 298 K

Figure S15. ¹H NMR spectrum (500 MHz) of compound 9a in CDCl₃ at 298 K

Figure S16. 13 C NMR spectrum (126 MHz) of compound **9a** in CDCl₃ at 298 K

Figure S17. ¹H NMR spectrum (500 MHz) of compound 9b in DMSO-d6 at 298 K

Figure S18. ¹³C NMR spectrum (126 MHz) of compound 9b in DMSO-d6 at 298 K

Figure S19. ¹H NMR spectrum (500 MHz) of compound 9c in CDCl₃ at 298 K

Figure S20. ¹³C NMR spectrum (126 MHz) of compound 9c in CDCl₃ at 298 K

Figure S21. ¹H NMR spectrum (500 MHz) of compound 9d in DMSO-d6 at 298 K

Figure S22. ¹³C NMR spectrum (176 MHz) of compound 9d in DMSO-d6 at 298 K

Figure S23. ¹H NMR spectrum (500 MHz) of compound 9e in CDCl₃ at 298 K

Figure S24. ¹³C NMR spectrum (176 MHz) of compound 9e in CDCl₃ at 298 K

Figure S25. ¹H NMR spectrum (500 MHz) of compound **9f** in CDCl₃ at 298 K

Figure S26. 13 C NMR spectrum (126 MHz) of compound 9f in CDCl₃ at 298 K

Figure S27. ¹H NMR spectrum (500 MHz) of compound 10a in $CDCI_3$ at 298 K

Figure S28. ¹³C NMR spectrum (126 MHz) of compound 10a in CDCl₃ at 298 K

Figure S29. ¹H NMR spectrum (500 MHz) of compound 10b in $CDCI_3$ at 298 K

Figure S30. 13 C NMR spectrum (176 MHz) of compound 10b in CDCl₃ at 298 K

Figure S31. ¹H NMR spectrum (500 MHz) of compound 10c in CDCl₃ at 298 K

Figure S33. ¹H NMR spectrum (500 MHz) of compound **10d** in DMSO-*d6* at 298 K

Figure S34. ¹³C NMR spectrum (176 MHz) of compound **10d** in DMSO-*d6* at 298 K

Figure S35. ¹H NMR spectrum (500 MHz) of compound 10e in $CDCI_3$ at 298 K

Figure S36. 13 C NMR spectrum (126 MHz) of compound 10e in CDCl₃ at 298 K

Figure S37. ¹H NMR spectrum (500 MHz) of compound **11** in DMSO-d6 at 298 K

Figure S38. ¹³C NMR spectrum (176 MHz) of compound **11** in DMSO-d6 at 298 K

Figure S39. ¹H NMR spectrum (500 MHz) of compound 11a in CDCl₃ at 298 K

Figure S40. 13 C NMR spectrum (126 MHz) of compound 11a in CDCl₃ at 298 K

Figure S41. ¹H NMR spectrum (500 MHz) of compound **11b** in DMSO-*d6* at 298 K

Figure S42. ¹³C NMR spectrum (176 MHz) of compound **11b** in DMSO-d6 at 298 K

Figure S43. ¹H NMR spectrum (500 MHz) of compound **11c** in CDCl₃ at 298 K

Figure S44. $^{\rm 13}C$ NMR spectrum (126 MHz) of compound 11c in CDCl3 at 298 K

Figure S45. ¹H NMR spectrum (500 MHz) of compound **12** in DMSO-*d6* at 298 K

Figure S46. ¹³C NMR spectrum (176 MHz) of compound **12** in DMSO-d6 at 298 K

Figure S47. ¹H NMR spectrum (500 MHz) of compound 12a in $CDCl_3$ at 298 K

Figure S48. ¹³C NMR spectrum (126 MHz) of compound 12a in CDCl₃ at 298 K

Figure S49. ¹H NMR spectrum (500 MHz) of compound **12b** in DMSO-*d6* at 298 K

Figure S50. ¹³C NMR spectrum (126 MHz) of compound **12b** in DMSO-*d6* at 298 K

Figure S51. ¹H NMR spectrum (500 MHz) of compound 12c in CDCl₃ at 298 K

Figure S52. ¹³C NMR spectrum (126 MHz) of compound 12c in CDCl₃ at 298 K

Figure S53. ¹H NMR spectrum (500 MHz) of compound 12d in CDCl₃ at 298 K

Figure S54. 13 C NMR spectrum (126 MHz) of compound 12d in CDCl₃ at 298 K

Figure S55. ¹H NMR spectrum (500 MHz) of compound 13a in DMSO-d6 at 298 K

Figure S56. ¹³C NMR spectrum (176 MHz) of compound 13a in DMSO-d6 at 298 K

Figure S57. ¹H NMR spectrum (500 MHz) of compound 13b in CDCl₃ at 298 K

Figure S58. 13 C NMR spectrum (126 MHz) of compound 13b in CDCl₃ at 298 K

Figure S59. ¹H NMR spectrum (500 MHz) of compound 13c in CDCl₃ at 298 K

Figure S60. 13 C NMR spectrum (126 MHz) of compound 13c in CDCl₃ at 298 K

Figure S61. ¹H NMR spectrum (500 MHz) of compound 14a in DMSO-d6 at 298 K

Figure S62. ¹³C NMR spectrum (126 MHz) of compound 14a in DMSO-d6 at 298 K

Figure S63 1 H NMR spectrum (500 MHz) of compound 14b in CDCl₃ at 298 K

Figure S64. ¹³C NMR spectrum (126 MHz) of compound 14b in CDCl₃ at 298 K

Figure S65. ¹H NMR spectrum (500 MHz) of compound **14c** in CDCl₃ at 298 K

Figure S66. ¹³C NMR spectrum (126 MHz) of compound **14c** in CDCl₃ at 298 K

Figure S67. ¹H NMR spectrum (500 MHz) of compound 15 in DMSO-d6 at 298 K

Figure S68. ¹³C NMR spectrum (176 MHz) of compound 15 in DMSO-d6 at 298 K

Figure S69. ¹H NMR spectrum (500 MHz) of compound 15a in $CDCI_3$ at 298 K

Figure S70. ¹³C NMR spectrum (126 MHz) of compound 15a in CDCl₃ at 298 K

Figure S71. ¹H NMR spectrum (500 MHz) of compound 15b in CDCl₃ at 298 K

Figure S72. 13 C NMR spectrum (126 MHz) of compound 15b in CDCl₃ at 298 K

Figure S73. ¹H NMR spectrum (500 MHz) of compound 16a in CDCl₃ at 298 K

Figure S74. $^{\rm 13}{\rm C}$ NMR spectrum (126 MHz) of compound 16a in CDCl3 at 298 K

Figure S75. ¹H NMR spectrum (500 MHz) of compound 16b in CDCl₃ at 298 K

Figure S76. 13 C NMR spectrum (176 MHz) of compound **16b** in CDCl₃ at 298 K

Figure S77. ¹H NMR spectrum (500 MHz) of compound 16c in CDCl₃ at 298 K

Figure 78. 13 C NMR spectrum (176 MHz) of compound 16c in CDCl₃ at 298 K

References:-

- M. Moreno, W. A. M. Elgaher, J. Herrmann, N. Schläger, M. M. Hamed, S. Baumann, R. Müller, R. W. Hartmann and A. Kirschning, *Synlett*, 2015, 26, 1175–1178.
- 2. G. M. Burslem, H. F. Kyle, P. Prabhakaran, A. L. Breeze, T. A. Edwards, S. L. Warriner, A. Nelson and A. J. Wilson, *Organic & Biomolecular Chemistry*, 2016, **14**, 3782-3786.
- 3. J.-M. Ahn and S.-Y. Han, *Tetrahedron Letters*, 2007, **48**, 3543-3547.
- 4. T.-K. Lee and J.-M. Ahn, ACS Combinatorial Science, 2011, **13**, 107-111.
- 5. O. V. Kulikov and A. D. Hamilton, *RSC Adv.*, 2012, **2**, 2454.
- 6. J. S. Yadav, B. V. S. Reddy, C. Madan and S. R. Hashim, *Chemistry Letters*, 2000, **29**, 738-739.