Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information

Organic positive-electrode material utilizing both an anion and cation: a benzoquinone-tetrathiafulvalene triad molecule, Q-TTF-Q, for rechargeable Li, Na, and K batteries

Minami Kato, Titus Masese, Masaru Yao*, Nobuhiko Takeichi, and Tetsu Kiyobayashi

Research Institute of Electrochemical Energy, Department of Energy and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577. Corresponding author E-mail: <u>m.yao@aist.go.jp</u>

Contents

Charge/discharge curves of the TTF/Li half cell	S 1
Comparison of the theoretical capacities	S2
EDX analysis of the Q-TTF-Q/Na half cells	S3
EDX analysis of the Q-TTF-Q/K half cells	S4
TGA curves of TTF and Q-TTF-Q	S5
Cyclic voltammogram (CV) of Q-TTF-Q	S 6
Initial charge/discharge curves of the QTTFQ/Li cell initiated by the charge process	S 7
Cycle performance of Q-TTF-Q/M half cells ($M = Li$, Na and K)	S 8
Dissolution test of the Q-TTF-Q electrodes	S9
Rate performance of the Q-TTF-Q/Li half cells S10	

Fig. S1 Charge and discharge curves of the TTF electrode in the 1.0 mol/L $\text{LiPF}_6/(\text{EC/DEC}=1/5)$ solution.

Fig. S2 Comparison of the theoretical capacities of same reported organic active materials. The values in the bar indicate the respective potential ranges.

Fig. S3 EDX analysis of the Q-TTF-Q/Na half cells.

Fig. S4 EDX analysis of the Q-TTF-Q/K half cells.

Fig. S5 Thermogravimetric analysis (TGA) of Q-TTF-Q and TTF at 5°C/min under an Ar atmosphere.

Fig. S6 Deconvoluted cyclic voltammogram of Q-TTF-Q in the acetonitrile solution containing 0.1 mol/L Bu_4NPF_6 ; scan rate is 50 mV s⁻¹.

Fig. S7 Initial charge/discharge curves of the QTTFQ/Li cell initiated by the charge process. The marked plateau potential values of 3.7(*1) and 4.1(*2) V vs. Li⁺/Li agree with the reported values for TTF, suggesting the anion insertion reaction to the TTF moiety at these potentials.

Fig. S8 Cycle performance of the Q-TTF-Q/M (M = Li, Na and K) half cells.

1.0 mol/I LiTFSI in PC

2.5 mol/l LiTFSI in PC

Fig. S9 Dissolution test of the Q-TTF-Q electrodes. In this test, two types of the electrolyte solutions (1.0 mol/L LiTFSI in PC, 2.5 mol/L LiTFSI in PC) to examine the concentration effect of the electrolyte salt.

Fig. S10 Rate performance of the Q-TTF-Q/Li half cells.