Supplementary Information

Hot Injection Synthesis of CuInS₂ Nanocrystals using Metal Xanthates and Their Application in Hybrid Solar Cells

Verena Perner,¹ Thomas Rath,^{1,*} Franz Pirolt,¹ Otto Glatter,¹ Karin Wewerka,² Ilse Letofsky-Papst,² Peter Zach,³ Mathias Hobisch,⁴ Birgit Kunert,⁵ Gregor Trimmel^{1,*}

¹ Institute for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria

² Institute for Electron Microscopy and Nanoanalysis and Center for Electron Microscopy, Graz University of Technology, NAWI Graz, Steyrergasse 17, 8010 Graz, Austria

³ Institute of Analytical Chemistry and Food Chemistry, NAWI Graz, Graz University of Technology, Graz, Austria, Stremayrgasse 9, 8010 Graz, Austria

⁴ Institute of Paper, Pulp and Fibre Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria

⁵ Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria

Fig. S1 X-ray diffraction pattern of the CuInS₂ nanocrystal sample prepared with oleic acid as capping ligand. The peak marked with an asterisk stems from a secondary phase. The broad peak around 20 ° 2θ can be ascribed to the capping ligand in the sample.

Fig. S2 ¹H-NMR pattern of oleylamine (green), oleic acid (red) and dioleamide (blue).

The ¹H-NMR spectra of oleylamine, oleic acid and dioleamide is shown in Fig. S1. The characteristic broad signal of the carboxylic acid group (11 ppm, not shown in this figure for a better visibility of the other peaks) has vanished in favor of a new peak (8.05 ppm) which can be assigned to the newly formed CO-NH functionality of dioleamide. The triplet of the CH₂ group next to the amino

functionality in oleylamine at around 2.65 ppm is shifted downfield (to 2.8 ppm) whereas the CH_2 group adjacent to the carbonyl functionality is shifted upfield (from 2.35 ppm to 2.15 ppm) as a consequence of amide formation.

Fig. S3 Energy levels of the conjugated polymer PCDTBT¹ and CuInS₂ nanocrystals.^{2,3}

Fig. S4 JV curves of typical PCDTBT/CuInS₂ based solar cells with a polymer/CuInS₂ weight ratio of 1:5 (A) and 1:15 (B) in the dark and under 100 mW/cm² illumination.

Fig. S5 JV curves of a typical PCDTBT/CulnS₂ based solar cell with a polymer/CulnS₂ weight ratio of 1:9 in the dark and under 100 mW/cm² illumination. The absorber layer was annealed at 140 °C for 10 min after spin coating.

References:

- ¹ N. Blouin, A. Michaud and M. Leclerc, *Adv. Mater.*, 2007, **19**, 2295-2300.
- ² E. Arici, N. Sariciftci and D. Meissner, *Adv. Funct. Mater.*, 2003, **13**, 165-171.
- ³ H. Zhong, S. S. Lo, T. Mirkovic, Y. Li, Y. Ding, Y. Li and G. D. Scholes, *ACS Nano*, 2010, **4**, 5253-5262.