Supporting Information

Enriched Graphitic N in Nitrogen-doped

Graphene as A Superior Metal-free

Electrocatalyst for Oxygen Reduction

Reaction

Xiangyu Lu,^{*a}</sup> Dan Wang*,^{*a*} Liping Ge,^{*a*} Lihui Xiao,^{*a*} Haiyan Zhang, ^{**b*} Lilai Liu,^{*c*} Jinqiu Zhang,^{*a*} Jinqiu Zhang,^{*a*} Maozhong An^{*a*} and Peixia Yang^{**a*}</sup>

a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China.

b College of Life Science, Henan University, Kaifeng, 475004 China

c College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022 China.

^a*E-mail: yangpeixia@hit.edu.cn ^b*E-mail: zhanghy150@sina.com

С Ν 0 Samples N-G-800 88.34 6.65 5.01 5.57 N-G-900 89.58 4.68 N-G-1000 89.1 3.46 7.44

Fig. S1 High-resolution C1s spectra of (a) N-G-800, (b) N-G-900 and (c) N-G-1000.

Fig. S2 FT-IR spectra of N-G-1000

Table S2. Summary of N contents N-G-800, N-G-900 and N-G-1000.

Samples	Species	contents (%)	contents (at%)
N-G-800	pyridinic N	36.98	2.46
	pyrrolic N	30.27	2.01
	graphitic N	16.93	1.13
	oxidized N	15.82	1.05
N-G-900	pyridinic N	29.97	1.40
	pyrrolic N	19.72	0.92
	graphitic N	30.15	1.41
	oxidized N	20.16	0.94
N-G-1000	pyridinic N	29.25	1.01
	pyrrolic N	15.29	0.53
	graphitic N	41.54	1.44
	oxidized N	13.92	0.48

Table S1 The content of N, C and O for N-G-800, N-G-900 and N-G-1000 (at%)

		-	-
 Samples	E_{onset} / V (vs.RHE)	<i>E</i> _{1/2} / V (vs.RHE)	$j@0.3 \text{ V} / \text{mA cm}^{-2}$
 N-G-800	0.929	0.820	5.23
N-G-900	0.979	0.845	5.54
N-G-1000	0.982	0.862	5.48
20% Pt/C	0.968	0.833	5.30

Table S3. The electrochemical parameters of the samples

Table S4. ORR activity comparison between this work and catalysts in the literature.

Materials	<i>E</i> _{1/2} (V) in 0.1 M KOH	References
This work	0.862 (vs. RHE)	This work
NDGs-800	0.85 (vs. RHE)	1
NGS4-900	0.859 (vs. RHE)	2
NGA	-0.17 (vs. Ag/AgCl)	3
N/3D-GNS-850	0.80 (vs. RHE)	4
NMGF	0.714 (vs. RHE)	5
NGC900	0.84 (vs. RHE)	6
NGM	0.77 (vs. RHE)	7
G-CN/C-2	0.79 (vs. RHE)	8
NGCNPs-T600	-0.131 (vs. SCE)	9
NHCS-1000	-0.215 (vs. SCE)	10
CNx/CMK-3	0.83 (vs. RHE)	11
NMNC-1000	0.759 (vs. RHE)	12
FeNx-PNC	0.85 (vs.RHE)	13
C-FeZIF-900-0.84	0.86 (vs.RHE)	14
NiO/CoN PINWs	0.68 (vs.RHE)	15
cal-CoZIF-VXC72	0.84 (vs.RHE)	16

Fig. S3 N-G-1000 and commercial 20 wt % Pt/C in O₂-saturated 0.1 M HClO₄ at a scan rate of 10 mV s⁻¹ and electrode-rotation speed of 1600 rpm

Fig. S4 Tafel plots with 1600 rpm RDE of N-G-1000 and Pt/C.

work and the recent reports in the literature.				
Names of nitrogen doped graphene	Active centers			
N-G-1000 (this work)	Carbon atoms neighboring Graphitic N.			
N-doped zigzag graphene ribbons ¹⁷	Graphitic N next to the edge.			
	Graphitic N determines the limiting			
Polyaniline/RG-O, polypyrrole/RG-O ¹⁸	current density, and pyridinic			
	N improves the onset potential.			
Nitrogen doped graphene ¹⁹	Graphitic N configuration.			
Mesoporous nitrogen-doped graphene ²⁰	Pyrrolic nitrogen along with the			
	mesoporous structure of graphene.			
Nitrogen-doped graphene ²¹	Pyridinic N.			
Highly oriented pyrolitic graphite ²²	Carbon atoms next to pyridinic N.			

 Table S5. Active centers of the N-doped graphene catalysts for ORR between this work and the recent reports in the literature.

References

- 1 Q. Wang, Y. Ji, Y. Lei, Y. Wang, Y. Wang, Y. Li, S. Wang, *ACS Energy Letters*, 2018, **3**, 1183-1191.
- 2 Q. Xiang, Y. Liu, X. Zou, B. Hu, Y. Qiang, D. Yu, W. Yin, C. Chen, *ACS Appl. Mater. Interfaces*, 2018, **10**, 10842-10850.
- 3 L. Zhao, X. Sui, J. Li, J. Zhang, L. Zhang, G. Huang, Z. Wang, *Applied Catalysis B: Environmental*, 2018, 231, 224-233.
- 4 S. Kabir, K. Artyushkova, A. Serov, P. Atanassov, *ACS Appl. Mater. Interfaces*, 2018, **10**, 11623-11632.
- 5 H. Wang, C. Tang, Q, Zhang, *Catalysis Today*, 2018, **301**, 25-31.
- 6 R. Luo, C. Liu, J. Li, C. Wang, X. Sun, J. Shen, W. Han, L. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 32737-32744.
- 7 C. Tang, H. Wang, X. Chen, B. Li, T. Hou, B. Zhang, Q. Zhang, M. Titirici, F. Wei, *Adv. Mater.*, 2016, 28, 6845-6851.
- 8 X. Fu, X. Hu, Z. Yan, K. Lei, F. Li, F. Cheng, J. Chen, *Chem. Commun.*, 2016, 52, 1725-1728.
- 9 R. Ma, Y. Zhou, P. Li, Y. Chen, J. Wang, Q. Liu, *Electrochimica Acta*, 2016, **216**, 347-354.
- 10 T. Zhou, Y. Zhou, R. Ma, Z. Zhou, G. Liu, Q. Liu, Y. Zhu, J. Wang, *Carbon*, 2017, **114**, 177-186.
- 11 C. Xiao, X. Chen, Z. Fan, J. Liang, B. Zhang, S. Ding, *Nanotechnology*, 2016, **27**, 445402.
- 12 C. Guo, X. Tong, X. Guo, Int. J. Hydrogen Energy. 2016, 41, 22941-22951.
- 13 L. Ma, S. Chen, Z. Pei, Y. Huang, G. Liang, F. Mo, Q. Yang, J. Su, Y. Gao, J.A. Zapien, C. Zhi, *ACS Nano*, 2018, **12**, 1949-1958.
- 14 Y. Deng, Y. Dong, G. Wang, K. Sun, X. Shi, L. Zheng, X. Li, S. Liao, ACS Appl. Mater. Interfaces, 2017, 9, 9699-9709.
- 15 J. Yin, Y. Li, F. Lv, Q. Fan, Y. Zhao, Q. Zhang, W. Wang, F. Cheng, P. Xi, S. Guo, *ACS Nano*, 2017, **11**, 2275-2283.
- 16 B. Ni, C. Ouyang, X.B. Xu, J. Zhuang, X. Wang, *Adv. Mater.*, 2017, **29**, 1701354–1701360.
- 17 Wang X.; Hou Z.; Ikeda T.; Huang SF.; Terakura K.; Boero M, Phys. Rev. B 2011, 84, 245434. 1-7.
- 18 L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R.S. Ruoff, *Energy Environ. Sci.*, 2012, 5, 7936-42.
- 19 Y. Liu, J. Li, W. Li, Y. Li, F. Zhan, H. Tang, Q. Chen, *Int. J. Hydrogen Energy*, 2016, **41**, 10354-10365.
- 20 S.M. Unni, S. Devulapally, N. Karjule, S. Kurungot, J. Mater. Chem., 2012, 22, 23506-13.

- 21 J. Wu, L. Ma, R.M. Yadav, Y. Yang, X. Zhang, R. Vajtai, J. Lou, P.M. Ajayan, ACS Appl. Mater. Interfaces, 2015, 7, 14763-9.
- 22 D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, *Science*, 2016, **351**, 361-5.