Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting information

Efficient Synthesis of novel RGD Based Peptides and the Conjugation of Pyrazine Moiety to their *N*-Terminus

Fatima Hamdan, ^a Zahra Bigdeli, ^a Saeed Balalaie, ^{*a,b} Norbert Sewald, ^c

Carmela Michalek^c

^a Peptide Chemistry Research Center, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran, balalaie@kntu.ac.ir, Tel:+98-21-23064226, Fax: +98-21-22889403

^b Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

^c Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany

Table of Contents

Peptide synthesis	
General Method 1: Synthesis of the Heptapeptide RGDNGRG (1)	S2
General Method 2: Final deprotection of A and formation of peptide 1	
High Performance Liquid Chromatography	
Synthesis of the Octapeptide RGDFAKLF (2)	S5
General Method for the synthesis of RGD based peptide (3, 4) by coupling moiety to the <i>N</i> -terminus	g pryrazine 2-carboxylic
General Method for the synthesis of RGD based peptide (5) by coupling pryra to the <i>N</i> -terminus	zine 2-carboxylic moiety S7
HRMS spectra of peptide 1	
Analytical HPLC chromatogram of 1	S9
HRMS spectra of peptide 2	S10
Analytical HPLC chromatogram of 2	
HRMS spectra of peptide 3	
Analytical HPLC chromatogram of 3	
HRMS spectra of peptide 4	
Analytical HPLC chromatogram of 4	S12
HRMS spectra of peptide 5	
Analytical HPLC chromatogram of 5	

Peptide synthesis:

General Method 1: Synthesis of Heptapeptide RGDNGRG (1)

The Synthetic pathway for the synthesis of RGDNGRG peptide sequence

H-Arg (Pbf)-Gly-Asp (OtBu)-Asn(Trt)-Gly-Arg(Pbf)-Gly-OH

(1.1g, 0.58 mmol) of the protected peptide (**B**) was slowly added to 7.5 ml of the reagent K TFA/TES/H₂O/MeOH (95%: 2%: 1.5%: 1.5%) and stirred at room temperature for 2 hours. This step removes all protected groups of the side chain within the peptide sequence. Then the solvent was evaporated and precipitated with Et₂O. The final peptide was dried under vacuum at 40 °C (Isolated yield **67**%).

High Performance Liquid Chromatography:

The samples were dissolved in solvent A for liquid chromatography. The mobile phase for all HPLC purifications consisted of solvent A (Acetonitrile/Water (70/30)) and solvent B (NaH₂PO₄/Water (10mM)) and separations were performed on an HPLC system (Knauer, Germany) equipped with a pump 1800 (Knauer, Germany), UV detector 2500 (Knauer, Germany). Peptide purification was performed at preparative scale using ODS-C₁₈ column (120 mm × 20mm, 10 μ m). The flow rate was set to 10 mL min⁻¹ and the peptides were separated by linear gradients of solvent B between 100 and 50% at 10% min⁻¹. The elution profile was monitored via UV absorbance at 210 nm and peptides were collected manually according to their absorbance at 210 nm.

Entry	Flow (ml/min)	Time (min)	A%	B%
1	10	0	0	100
2	10	5	0	100
3	10	55	50	50
4	10	80	100	0
5	10	110	100	0

Analytical RP-HPLC separation was carried out using ODS-C₁₈ column (250 mm × 4.6 mm, 3-5 μ m) at a flow rate of 1 mL min⁻¹. The mobile phase for consisted of solvent A [Acetonitrile/Buffer B (80/20)] and solvent B Buffer B [TFA/Water (0.1%)] and separations were performed on an HPLC system (Knauer, Germany) equipped with a pump 1000 (Knauer, Germany), UV detector 2500 (Knauer, Germany). The employed elution program started at 95 % A and remained at this point for 5 min before changing to 55 % of solvent A over 45 min. at 1% min⁻¹.

Entry	Flow (ml/min)	Time (min)	A%	B%
1	1	0	95	5
2	1	5	95	5

3	1	45	55	45
4	1	65	0	100
5	1	80	0	100

HPLC analysis found that peptide (1) was obtained in 97 %< purity (t_R : 6. 25 min). HR-Mass (ESI): $C_{26}H_{47}N_{14}O_{11} m/z = [M+H]^+$ Found 731.3550, Calc. for 731.3543.

Synthesis of the octapeptide RGDFAKLF (2)

The same procedure was followed for the synthesis and purification of peptide 2 (Isolated yield **70**%).

HPLC analysis found that peptide (2) was obtained in 96 %< purity (t_R: 42. 26 min). HR-Mass (ESI): $C_{45}H_{69}N_{12}O_{11}m/z = [M+H]^+$ Found 953.5207, Calc. for 953.5203.

General Method for the synthesis of RGD based peptide (3, 4) by coupling pyrazine 2-carboxylic moiety to the *N*-terminus

HPLC analysis found that peptide (3) was obtained in 97 %< purity (t_R : 18. 30 min). HR-Mass (ESI): $C_{31}H_{49}N_{16}O_{12}m/z = [M+H]^+$ Found 837.3717, Calc. for 837.3710.

HPLC analysis found that peptide (4) was obtained in 96 %< purity (t_R : 47. 29 min). HR-Mass (ESI): $C_{50}H_{71}N_{14}O_{12}m/z = [M+H]^+$ Found 1059.5378, Calc. for 1059.5370.

General Method for the synthesis of RGD based peptide (5) by coupling pyrazine 2carboxylic moiety to the *N*-terminus

HPLC analysis found that peptide (5) was obtained in 99 %< purity (t_R : 32. 04 min). HR-Mass (ESI): $C_{40}H_{57}N_{17}O_{13}m/z = [M+H]^+$ Found 984.4403, Calc. for 984.4395.

Peptide 1: H-Arg-Gly-Asp-Asn-Gly-Arg-Gly-OH (RGDNGRG)

HPLC analysis found that peptide (1) was obtained in 97 %< purity (t_R : 6. 25 min). HR-Mass (ESI): $C_{26}H_{47}N_{14}O_{11} m/z = [M+H]^+$ Found 731.3550, Calc. for 731.3543.

HR-MS (ESI) of peptide 1.

Analytical HPLC chromatogram of peptide 1.

Peptide 2: H-Arg-Gly-Asp-Phe-Ala-Lys-Leu-Phe-OH (RGDFAKLF)

HPLC analysis found that peptide (2) was obtained in 96 %< purity (t_R: 42. 26 min). HR-Mass (ESI): $C_{45}H_{69}N_{12}O_{11}m/z = [M+H]^+$ Found 953.5207, Calc. for 953.5203.

HR-MS (ESI) of peptide 2.

Analytical HPLC chromatogram of peptide 2.

Peptide 3: Pyrazine-Arg-Gly-Asp-Asn-Gly-Arg-Gly-OH (Pyrazine-RGDNGRG)

HPLC analysis found that peptide (3) was obtained in 97 %< purity (t_R: 18. 30 min). HR-Mass (ESI): $C_{31}H_{49}N_{16}O_{12}m/z = [M+H]^+$ Found 837.3717, Calc. for 837.3710.

HR-MS (ESI) of peptide 3.

Analytical HPLC chromatogram of peptide 3.

Peptide4:Pyrazine-Arg-Gly-Asp-Phe-Ala-Lys-Leu-Phe-OH(Pyrazine-RGDFAKLF)

HPLC analysis found that peptide (4) was obtained in 96 %< purity (t_R : 47. 29 min). HR-Mass (ESI): $C_{50}H_{71}N_{14}O_{12}m/z = [M+H]^+$ Found 1059.5378, Calc. for 1059.5370.

HR-MS (ESI) of peptide 4.

Analytical HPLC chromatogram of peptide 4.

Peptide 5: Pyrazine-Phe-Arg-Gly-Asp-Asn-Gly-Arg-Gly-OH (Pyrazine-F-RGDNGRG)

HPLC analysis found that peptide (5) was obtained in 99 %< purity (t_R : 32. 04 min). HR-Mass (ESI): $C_{40}H_{57}N_{17}O_{13}m/z = [M+H]^+$ Found 984.4403, Calc. for 984.4395.

HR-MS (ESI) of peptide 5.

Analytical HPLC chromatogram of peptide 5.