Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

Synthesis of SN38 Prodrug with Amphiphilic Phosphorylcholine Polymers and Prodrug Micelle Properties

Fan Chen¹, Yuanyuan Cai¹, Lei Huang¹, Yuanwei Chen^{*1}, Xianglin Luo^{1,2*}

¹College of Polymer Science and Engineering, Sichuan University, Chengdu 610065; P. R. China;

² State Key Lab of Polymer Materials Engineering, Sichuan University, Chengdu 610065; P.R. China;

Corresponding authors: Xianglin Luo (Email: luoxl_scu@126.com)

Figure S1 ¹H NMR of P(CL-co-BCL)-OH(A), P(CL-co-ACL)-OH(B),

P(CL-co-ACL)-Br(C) in $CDCl_3$.

The total DP of polycaprolactone was determined by ¹H NMR in Figure S1(A) from the integral ratio of peak g'' at 3.65 ppm (methylene protons neighbouring OH in end CL) to peak c at 2.3 ppm (methylene protons neighbouring carbanyl group in CL). The calculated DP of PCL in the copolymers was respectively 29 and 48. The peak g at 4.2 ppm was attributed to the methenyl proton of α -BrCL moieties. Thus, α -BrCL molar fractions were determined by the integral ratio of peak g at 4.2 ppm to peak c at 2.3 ppm, around 10% of sum units. The calculation formula was as follows.

$$n = \frac{\frac{1}{2} \times u \mathbf{l} \mathbf{i} \frac{(\mathbf{l} \cdot \mathbf{g}' \cdot \mathbf{g} - \mathbf{l} \mathbf{c})}{3}}{\frac{1}{2} \times u \mathbf{l}}$$
(1)
$$\omega = \frac{\frac{(\mathbf{l} \cdot \mathbf{g}' \cdot \mathbf{i} \cdot \mathbf{I} - \mathbf{l} \mathbf{c})}{3}}{\frac{1}{2} \times u \mathbf{l}}$$
(2)

Where the n represents degree of polymerization of the sum of α -BrCL and ϵ -caprolactone; Ic represents integral area of peak c; Ic'g'g represents sum of the integral areas of peak c'/g' and g; ω represent percentage α -BrCL.

Figure S2 FT-IR spectrum of P(BCL-co-CL)-OH (A), P(ACL-co-CL)-OH (B), P(ACL-co-CL)-Br (C), P(ACL-co-CL)-b-PMPC (D).

Figure S4 DSC curves of different polymers for heating (A,C) and cooling (B,D)

Figure S5 Cytotoxicity of blank micelles of $P(ACL-co-CL)_{29}$ -PMPC₁₀ and $P(ACL-co-CL)_{48}$ -PMPC₁₀ against L929 cells (A), MCF-7 cells (B) and 4T1 cells(C).

inhibitory Table S1. vitro growth In activity of SN38 and P(CL/CL-g-SN38)₄₈-PMPC₁₀ to MCF-7 and 4T1(MTT assay) (48 h treatment).

Cell	SN38	IC ₅₀ (μg mL ⁻¹) P(CL/CL-g-SN38) ₄₈ -PMPC ₁₀
MCF-7	0.16	0.27
4T1	8.04	24.06

