Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

## Supporting information

## Porosity- and Content-Controlled Metal/Metal Oxide/Metal Carbide@Carbon (M/MO/MC@C) Composites Derived from MOFs: Mechanism Study and Application for Lithium-ion Batteries

Min Seok Kang<sup>a</sup>, Dae-Hyuk Lee<sup>b</sup>, Kyung-Jae Lee<sup>b</sup>, Hee Soo Kim<sup>a</sup>, Jihoon Ahn<sup>c</sup>, Yung-Eun Sung<sup>b\*</sup>, and Won Cheol Yoo<sup>a,d\*</sup>

<sup>a</sup>Department of Applied Chemistry, Hanyang University, Ansan 15588, Republic of Korea

<sup>b</sup>Center for Nanoparticle Research Institute for Basic Science (IBS), Department of Chemical

<sup>c</sup>Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea

and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea

<sup>d</sup>Department of Chemical and Molecular Engineering, Hanyang University, Ansan 15588, Republic of Korea

Corresponding Author

\*Won Cheol Yoo: E-mail: wcyoo@hanyang.ac.kr

\*Yung-Eun Sung: E-mail: ysung@snu.ac.kr

**Keywords**: MOF, MOF derived M/MO/MC@C, pseudomorphic transformation, carbothermic reduction, Lithium-ion battery

Note 1. Calculation of free energy changes in Figure 4.

To calculate free energy change of reaction, we use following gibbs free energy equation.

 $\Delta G = \Delta H - T \Delta S$ 

Based on the following equation we can simply obtain enthalpy changes ( $\Delta_f H^{\circ}_{products}$ ,  $\Delta_f H^{\circ}_{reactants}$ ) and entropy changes ( $S_{products}$ ,  $S_{reactants}$ ) of the reaction.

Enthalpy change  $(\Delta H) = \sum \Delta_f H^\circ_{\text{products}} - \sum \Delta_f H^{\circ \circ}$ 

Entropy change  $(\Delta S) = \sum S_{\text{products}} - \sum S_{\text{reactants}}$ 

Eventually the ellinghem equation in figure 4 was plotted by temperature using free energy equation.



Figure S1.  $N_2$  sorption isotherms for MOFs and PF@MOF samples: Cu-HKUST-1 and PF@Cu-HKUST-1 (a), Zn-HKUST-1 and PF@Zn-HKUST-1 (b), Co-MOF-74 and PF@Co-MOF-74 (c), and Fe-MOF-74 and PF@Fe-MOF-74.



Figure S2. TGA results for MOFs and PF@MOF samples: Cu-HKUST-1 and PF@Cu-HKUST-1 (a), Zn-HKUST-1 and PF@Zn-HKUST-1 (b), Mg-MOF-74 and PF@Mg-MOF-74 (c), Co-MOF-74 and PF@Co-MOF-74 (d), and Fe-MOF-74 and PF@Fe-MOF-74 (e).



Figure S3. SEM images of ZIF-8 and PF@ZIF-8.



Figure S4. XRD pattern of Cu/CuO@C derived from PF@Cu-HKUST-1 thermolysis at 380 °C.



Figure S5. SEM image of cubic shaped carbon derived from PF@Zn-HKUST-1 at high temperature thermolysis (900 °C) condition.



Figure S6. XRD pattern of Fe/Fe<sub>3</sub>C@C Heat treated at 1000 °C



Figure S7. XRD pattern of Fe@C after acid treatment



Figure S8. (a)  $N_2$  isotherm at 77K and (b) BJH plot of ZnO@C and C.



Figure S9. N<sub>2</sub> isotherm of MgO@C at 77K.



Figure S10.  $N_2$  isotherms Co/CoO/Co<sub>3</sub>O<sub>4</sub>@C and Co/CoO@C at 77K.



Figure S11. (a)  $N_2$  isotherm at 77K and (b) BJH plot of  $Fe_2O_3@C\_100$  & 10%, Fe@G and Fe/Fe\_3C@C



Figure S12. TGA data of Cu@C\_100 & 10%.



Figure S13. TGA data of CuO@C\_100 & 10%.



Figure S14. TGA data of  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>@C\_100 & 10%.

| Sample        | $S_{BET} (m^2/g)$ | $V_{tot}$ (cm <sup>3</sup> /g) | V <sub>micro</sub> (cm <sup>3</sup> /g) |
|---------------|-------------------|--------------------------------|-----------------------------------------|
| Cu-HKUST-1    | 1377.4            | 0.57                           | 0.54                                    |
| PF@Cu-HKUST-1 | 4.1               | 0.02                           | -                                       |
| Co-MOF-74     | 433               | 0.21                           | 0.17                                    |
| PF@Co-MOF-74  | 4.3               | 0.01                           | -                                       |
| Fe-MOF-74     | 283               | 0.14                           | 0.11                                    |
| PF@Fe-MOF-74  | 3.9               | 0.01                           | -                                       |
| Mg-MOF-74     | 364               | 0.2                            | 0.14                                    |
| PF@Mg-MOF-74  | 5.2               | 0.03                           | -                                       |

Table S1. Textural features for MOFs and PF@MOF samples.

| Materials                                    | S° (KJ/mol·K) | H°(KJ/mol) |
|----------------------------------------------|---------------|------------|
| CuO(s)                                       | -157.3        | 42.6       |
| $\gamma$ -Fe <sub>2</sub> O <sub>3</sub> (s) | 87.4          | -808.1     |
| Fe <sub>3</sub> C(s)                         | 220.1         | 25.1       |
| Mg(g)                                        | 148.648       | 147.1      |
| MgO(s)                                       | 26.95         | -601.6     |
| Zn(g)                                        | 160.9         | 130.4      |
| ZnO(s)                                       | -43.6         | -350.4     |
| CoO(s)                                       | 53.0          | -237.7     |
| Co <sub>3</sub> O <sub>4</sub> (s)           | 102.5         | -891       |

Table S2. Thermodynamic data of Metal and Metal oxides