Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information

¹Chemical modification of vertically aligned graphene standing on

SiC microspheres for selective oxidation

Jun Ma^{1,2*}, Yiwei Fei¹, Jianqiang Hu¹, Nan Wu¹, Shian Sun¹, Feng Xie¹, Gongyi Li²,

Xiaodong Li², Yuelun Wang^{3,*}

¹ Air Force Logistics College, Xuzhou, 221000, People's Republic of China;

²College of Science, National University of Defense Technology, Changsha, 410073,

People's Republic of China;

³Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education,

China University of Mining & Technology, Xuzhou, 221116, People's Republic of China.

^{1*}Corresponding author. E-mail: manudt@nudt.edu.cn (Jun Ma); E-mail: wangyuelun@126.com (Yuelun Wang)

1. The XPS surveys of the oxidized MG on SiC

Figure 1s The XPS spectra of the MG on SiC oxidized in concentrated HNO_3 for 6 (a), 12 (b), 96 (c) hours, respectively; the elements composition on the surface (d) of oxidized MG on SiC

2. C1s high resolution XPS analysis of the oxidized MG on SiC

Figure 2s The high resolution C1s XPS analysis of the oxidized MG on SiC after treated in concentrated HNO_3 for 6 (a), 12 (b), 96 (c) hours, respectively; (d) the calculated carbonaceous bonds on the surface of the MG on SiC

Figure 3s The N1s high resolution XPS analysis of the NG on SiCm prepared by the reactions between hydrazine and the MG on SiC oxidized in concentrated HNO₃ for 6 (a) and 12 (b) hours, respectively.

4. Raman spectra of NG on SiCm samples

Figure 4s The Raman spectra of NG on SiCm which prepared by the reduction reactions with hydrazine and oxidized MG on SiC that treated in concentrated HNO_3 for 6 (a), 12 (b) and 96 (c) hours.

5. The XRD pattern of the NG on SiCm

Figure 5s The XRD pattern of the NG on SiCm prepared by the reactions between

hydrazine and the MG on SiC oxidized in concentrated HNO3 for 96 hours

6. The I_D/I_G and I_{2D}/I_G value of the NG on SiCm samples based on the Raman analysis

Table 1s The I_D/I_G and I_{2D}/I_G values of the NG on SiCm samples (prepared by the reactions between hydrazine and the MG on SiC oxidized in HNO₃ for 6, 12 and 96 hours)

Oxidation Time	I_D/I_G	I_{2D}/I_G
96 hours	1.028	0.615
12 hours	1.151	0.469
6 hours	1.206	0.548

7. The selectivity oxidation of benzyl alcohol with NG on SiCm as catalyst

		TBHP, H ₂ O, 80 °C 24 hours		+
Catalyst	N [at%]	Conversion Rate [%]	Y	eild [%]
None	0	7.4	2.0	5.4
MG on SiC	0	36.3	14.8	21.5
NG on SiCm	1.88	50.4	33.3	17.1
NG on SiCm	2.01	72.4	60.0	12.4
NG on SiCm	2.14	99.9	99.1	0.08

Table 2s The selectivity oxidation of benzyl alcohol with NG on SiCm as catalyst

Footnote: Typical reaction conditions: benzyl alcohol (5 m mol), TBHP (30 m mol), catalyst (20 mg), 24 hours, 80 °C. The conversion rate and selectivity were examined by GCMS while *n*-dodecane was applied as internal standard.