Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information

Assembly of Metal Organic Frameworks Based on 4-connected 3,3',5,5'-Azobenzenetetracarboxylic Acid: Structures, Magnetic Properties, and Sensing Fe³⁺ ions

Min Di, Jingwen Shen, Zheng Cui, Xiaoying Zhang,* and Jingping Zhang*

Advanced Energy Materials Research Center Faculty of Chemistry, Northeast Normal University Changchun 130024, P. R. China † E-mail: zhangxy218@nenu.edu.cn; jpzhang@nenu.edu.cn.

Table S1. Selected bond distances (Å) ar	nd bond angles (°) for complex 1.
--	-----------------------------------

Co(1)-O(1)	2.118(6)	Co(1)-O(10)	2.074(6)	Co(2)-O(5)#1	2.015(5)
Co(1)-O(3)	2.057(5)	Co(1)-O(11)	2.109(7)	Co(2)-O(6)	2.339(6)
Co(1)-O(4)#1	2.030(6)	Co(2)-O(1)	2.135(5)	Co(2)-O(7)#2	2.052(5)
Co(1)-O(9)	2.095(7)	Co(2)-O(2)	2.005(5)	Co(2)-O(8)#2	2.339(6)
O(3)-Co(1)-O(1)	92.5(2)	O(1)-Co(2)-O	D(6)	58.50(19)
O(3)-Co(1)-O(9)	89.3(3)	O(1)-Co(2)-O	D(8)#2	93.0(2)
O(3)-Co(1)-O(10)	173.5(3)	O(2)-Co(2)-O	D(1)	104.5(2)
O(3)-Co(1)-O(11)	83.9(3)	O(2)-Co(2)-O(5)#1		97.2(3)
O(4)#1-Co(1)-	O(1)	89.2(2)	O(2)-Co(2)-O(6)		92.1(3)
O(4)#1-Co(1)-	O(3)	95.0(3)	O(2)-Co(2)-O(7)#2		98.5(2)
O(4)#1-Co(1)-	O(9)	174.9(3)	O(2)-Co(2)-O(8)#2		158.21(19)
O(4)#1-Co(1)-	O(10)	86.3(3)	O(5)#1-Co(2)-O(1)		102.0(2)
O(4)#1-Co(1)-	O(11)	91.2(3)	O(5)#1-Co(2)-O(6)	160.1(2)
O(9)-Co(1)-O(1)	93.3(3)	O(5)#1-Co(2)-O(7)#2	103.7(2)
O(9)-Co(1)-O(11)	86.6(3)	O(5)#1-Co(2)-O(8)#2	91.6(2)
O(10)-Co(1)-O	0(1)	93.8(2)	O(6)-Co(2)-O	D(8)#2	86.0(2)
O(10)-Co(1)-O	0(9)	89.1(3)	O(7)#2-Co(2) - O(1)	142.7(2)
O(10)-Co(1)-O	0(11)	89.8(3)	O(7)#2-Co(2)-O(6)	92.1(2)
O(11)-Co(1)-O	0(1)	176.4(2)	O(7)#2-Co(2)-O(8)#2	59.9(2)

Symmetry transformations used to generate equivalent atoms:

#1 = x+1/2, -y+3/2, -z+5/4 #2 = x+1/2, -y+5/2, -z+5/4

Mn(1)-O(1) 2.17	7(4) Mn(1)-0	D(2) 2.1070(8) Mn(1)-O(3)	2.148(5)
Mn(1)-O(1W) 2.35	5(4) Mn(1)-0	D(4)#1 2.164(4)) Mn(1)-O(5)#2	2 2.172(4)
Mn(1)-O(6)#3 2.17	75(4) Mn(2)-0	D(7) 2.24(2)		
O(2)-Mn(1)-O(1)	178.1(9) O(2)-M	n(1)-O(1W)	170.6(8)
O(2)-Mn(1)-O(3)	87.6(2)	O(2)-M	n(1)-O(4)#1	94.66(17)
O(2)-Mn(1)-O(5)#2	94.22(1	7) O(2)-M	n(1)-O(6)#3	88.5(13)
O(1)-Mn(1)-O(3)	94.3(9)	O(1)-M	n(1)- O(4)#1	85.5(13)
O(1)-Mn(1)-O(5)#2	85.7(13) O(1)-M	n(1)-O(6) #3	89.6(9)
O(3)-Mn(1)-O(1W)	101.3(9) O(3)-M	n(1)- O(4)#1	87.5(2)
O(3)-Mn(1)-O(5)#2	90.1(2)	O(3)-M	n(1)- O(6)#3	176.07(19)
O(4)#1-Mn(1)-O(1W	V) 88.9(12) O(4)#1-	Mn(1)- O(5)#2	170.71(16)
O(4)#1-Mn(1)- O(5)	#2 92.63(1	9) O(5)#2-	Mn(1)-O(1W)	82.7(12)
O(5)#2-Mn(1)- O(6)	#3 90.34(1	8) O(6)#3-	Mn(1)- O(1W)	82.6(9)

Table S2. Selected bond distances (Å) and bond angles (°) for complex 2.

Symmetry transformations used to generate equivalent atoms:

#1 = 1-z, x, 1-y #2 = 3/2-x, 3/2-z, y-1/2 #3 = 3/2-y, 3/2-x, z-1/2

Table S3. Selected bond distances (Å) and bond angles (°) for complex 3.

Zn(1)-Zn(2)	3.0030(13)	Zn(2)-O(3)	2.009(9)	Zn(3)-O(7)	1.98(3)
Zn(1)-O(1)	2.046(8)	Zn(2)-O(9)#1	2.002(9)	Zn(3)-O(10)#4	2.017(7)
Zn(1)-O(4)	2.035(7)	Zn(2)-O(12)#2	1.999(9)	Zn(3)-O(11)#5	2.017(7)
Zn(1)-O(8)#1	2.052(7)	Zn(2)-O(13)	1.939(8)	Zn(3)-O(6A)	2.06(2)
Zn(1)-O(14)#2	2.011(8)	Zn(3)-Zn(3)#3	3.0058(17)	Zn(3)-O(5A)#3	1.942(18)
Zn(1)-O(15)	2.003(6)	Zn(3)-O(5)#3	2.06(3)	Zn(3)-O(7A)	1.999(19)
Zn(2)-O(2)	2.025(10)	Zn(3)-O(6)	1.986(19)		
O(1)-Zn(1)-Zn(2	2)	74.4(2)	O(2)-Zn(2)-	Zn(1)	83.6(2)
O(1)-Zn(1)-O(8)#1	85.9(4)	O(3)-Zn(2)-	Zn(1)	75.2(3)
O(4)-Zn(1)-Zn(2)	2)	83.9(2)	O(3)-Zn(2)-	O(2)	158.4(4)
O(4)-Zn(1)-O(1)	158.1(3)	O(9)#1-Zn(2	2)-Zn(1)	87.2(2)
O(4)-Zn(1)-O(8)#1	89.8(3)	O(9)#1-Zn(2	2)-O(2)	86.5(5)
O(8)#1-Zn(1)-Z	n(2)	70.8(2)	O(9)#1-Zn(2	2)-O(3)	88.4(4)
O(14)#2-Zn(1)-	Zn(2)	86.8(2)	O(12)#2-Zn	(2)-Zn (1)	70.8(2)
O(14)#2-Zn(1)-	O(1)	89.3(4)	O(12)#2-Zn	(2)-O(2)	90.1(5)
O(14)#2-Zn(1)-	O(4)	86.6(4)	O(12)#2-Zn	(2)-O(3)	86.8(4)
O(14)#2-Zn(1)-	O(8)#1	157.6(3)	O(12)#2-Zn	(2)-O(9)#1	157.9(3)

O(15)-Zn(1)-Zn(2)	166.4(2)	O(13)-Zn(2)-Zn(1)	167.2(3)
O(15)-Zn(1)-O(1)	99.2(3)	O(13)-Zn(2)-O(2)	103.7(4)
O(15)-Zn(1)-O(4)	102.6(3)	O(13)-Zn(2)-O(3)	97.9(4)
O(15)-Zn(1)-O(8)#1	97.1(3)	O(13)-Zn(2)-O(9)#1	103.5(4)
O(15)-Zn(1)-O(14)#2	105.3(3)	O(13)-Zn(2)-O(12)#2	98.5(4)
O(5)#3-Zn(3)-Zn(3)#3	76.2(7)	O(11)#5-Zn(3)-O(5)#3	156.3(8)
O(6)-Zn(3)-Zn(3)#3	81.7(6)	O(11)#5-Zn(3)-O(10)#4	89.9(4)
O(6)-Zn(3)-O(5)#3	89.7(12)	O(11)#5-Zn(3)-O(6A)	88.5(9)
O(6)-Zn(3)-O(10)#4	161.4(6)	O(6A)-Zn(3)-O(5)#3	84.7(13)
O(6)-Zn(3)-O(11)#5	89.3(7)	O(5A)#3-Zn(3)-O(5)#3	12.7(10)
O(7)-Zn(3)-Zn(3)#3	169.1(9)	O(5A)#3-Zn(3)-O(10)#4	88.1(7)
O(7)-Zn(3)-O(5)#3	100.5(11)	O(5A)#3-Zn(3)-O(11)#5	168.9(6)
O(7)-Zn(3)-O(6)	87.9(11)	O(5A)#3-Zn(3)-O(6A)	87.3(11)
O(7)-Zn(3)-O(10)#4	110.3(10)	O(5A)#3-Zn(3)-O(7A)	104.2(8)
O(7)-Zn(3)-O(11)#5	103.1(9)	O(7A)-Zn(3)-O(5)#3	116.2(9)
O(10)#4-Zn(3)-Zn(3)#3	79.9(3)	O(7A)-Zn(3)-O(10)#4	92.4(8)
O(10)#4-Zn(3)-O(5)#3	83.7(10)	O(7A)-Zn(3)-O(11)#5	86.8(6)
O(10)#4-Zn(3)-O(6A)	147.1(6)	O(7A)-Zn(3)-O(6A)	120.3(10)
O(11)#5-Zn(3)-Zn(3)#3	80.2(3)		

Symmetry transformations used to generate equivalent atoms:

#1 -x+y,-x,z #2 -x+y+1,-x+1,z #3 -x,-x+y,-z+1

#4 x-y,-y+1,-z+1 #5 -x+y,-x+1,z

Table S4. Bond va	lence sum calcul	ations for com	plex 1.
-------------------	------------------	----------------	---------

Atom	Co ^{II}	Co ^{III}
Co1	<u>2.107</u>	2.152
Co2	<u>1.874</u>	1.916

 Table S5. Bond valence sum calculations for complex 2.

Atom	Mn ^{II}	Mn ^{III}
Mn1	<u>2.235</u>	2.062
Mn2	<u>1.778</u>	1.640

Explanations of Crystal Structure Determination

Complex 1: PLAT910_ALERT_3_B Missing # of FCF Reflection(s) Below Theta (Min). **Explanation**: Some reflections with high intensities, which made the detector overflow were automatically omitted by the diffractometer. So some reflections were missing.

Complex 3: PLAT341_ALERT_3_B Low Bond Precision on C-C Bonds

Explanation: The quality of crystal was not so good and the data were collected under low temperature. Therefore thermal vibration of the C atoms was so high that the precision of the C-C bonds is low.

PLAT420_ALERT_2_B D-H Without AcceptorO7 – H7AAPLAT420_ALERT_2_B D-H Without AcceptorO7 – H7ABPLAT420_ALERT_2_B D-H Without AcceptorO7 – H7APLAT420_ALERT_2_B D-H Without AcceptorO7 – H7BPLAT420_ALERT_2_B D-H Without AcceptorO13 – H13APLAT420_ALERT_2_B D-H Without AcceptorO13 – H13BPLAT420_ALERT_2_B D-H Without AcceptorO13 – H13BPLAT420_ALERT_2_B D-H Without AcceptorO15 – H15B

Explanation: The coordination compound contained so many hydroxyls. The acceptor of the hydrogen on the O-H couldn't be located because there was no proper atom such as O or N for the hydroxyl to form hydrogen bond in the radius of 3.6 Å.

Fig. S1 A schematic view of the (4, 4)-connected net for **PtS**-type topology presented by complex **1**.

Fig. S2 (a) The distribution of six $abtc^{4-}$ around each $[Mn_3OH(CO_2)_6]$ SBUs in complex **2**; (b) The distribution of four $[Mn_3OH(CO_2)_6]$ SBUs around each $abtc^{4-}$ in complex **2**.

Fig. S3 The larger channel between the cubic cages along *a*-axis (a) and *c*-axis (b) in complex 2. $[Mn(H_2O)4]^{2+}$, H atoms, coordinating DMA and H₂O molecules, and free solvent molecules have been omitted for clarity.

Fig. S4 A schematic view of the (4,6)-connected net for **soc**-type topology presented by complex **2**.

Fig. S5 The coordination environments of Zn ions in complex **3**. Symmetry code: #1: -x+y, -x, z; #2: 1-x+y, 1-x, z; #3: x-y, 1-y, 1-z; #4: -x+y, 1-x, z.

Fig. S6 A schematic view of the (4,4)-connected net for NbO-type topolopy presented by complex 3.

Fig. S7 IR spectra of 1 a), 2 b), 3 c).

Fig. S8 Comparison of the simulated and experimental PXRD patterns: 1 a), 2 b), 3 c).

Fig. S9 (a) Power XRD profiles of 2 after exposing to the air for a month; (b) Power XRD profiles of 2 after being soaked in various boiling solvents for 12 h.

Fig. S10 The TG curves of 1 a), 2 b), 3 c) on crystalline samples under the N_2 atmosphere in the range of 55–800 °C.

Figure S11. The ZFC and FC curves at 50 Oe of 2.

Fig. S12 Plot of $M/N\beta$ vs. *H* at 2 K for complexes 1 a), 2 b).

Fig. S13 Comparison of the experimental and activated PXRD patterns of 1 a), 2 a), 3 b).

Fig. S14 Nitrogen sorption isotherm on 1 a), 2 a), 3 b) at 77 K.

Fig. S15 Carbon dioxide sorption isotherm on 1 a), 3 b) at 273 K.

Fig. S16 The PXRD patterns of the experimental and after N_2 adsorption measurement of 3 .

Fig. S17 (a) Solid-state emission spectrum of H_4 abtc and 3 at room temperature; (b) The excitation (red) and PL spectra (black) of the origin DMF solution of compound 3, monitored and excited at 335 nm and 282 nm, respectively

Fig. S18 (a) Luminescence spectra and of the DMF suspensions of complex **3** with the different metal ions; (b) Luminescence spectra of suspensions the DMF suspensions of complex **3** after adding different volume of Fe^{3+} ions solutions.

Fig. S19 (a) Stern–Volmer plot of I_0/I versus Fe³⁺ concentration in DMF suspension for **3** (inset: the linear relationship between I_0/I and low concentration of Fe³⁺ ions). (b) The comparison of K_{sv} values between Zn-based MOFs reported and our work for sensing Fe³⁺ ions.

Fig. S20 (a) Recycle tests of complex **3** by the monitoring of the luminescence intensity at 335 nm and the luminescence quenching percentage before (black) and after (red) adding of Fe^{3+} ions (1 mmol L⁻¹). (b) Luminescence spectra of suspensions the DMF suspensions of complex **3** after adding 1mmol L⁻¹ Fe^{3+} ions solutions from the first to third cycles in the recycle tests.

Fig. S21 PXRD patterns of simulated and complex 3 before and after three cycles toward the detection of Fe^{3+} ions.

Fig. S22 The patterns simulated for compound 3, and PXRD patterns of compound 3 as-synthesized and immersed in Fe^{3+} DMF solution at room temperature.

Fig. S23 UV-Vis spectra of different metal ions with the same concentration (0.2 mmol L⁻¹).

Fig. S24 UV-Vis spectra of Fe^{3+} ions DMF solutions (0.2 mmol L⁻¹) and emission spectrum of complex 3.

References

- 1. P. Hao, Q. Huang, L. Gu, Y.-H. Yu and D.-S. Ma, Polyhedron, 2018, 149, 117-125.
- 2. F. L. Hu, Y. X. Shi, H. H. Chen and J. P. Lang, Dalton Trans., 2015, 44, 18795-18803.
- 3. Y. Q. Zhang, V. A. Blatov, T. R. Zheng, C. H. Yang, L. L. Qian, K. Li, B. L. Li and B. Wu, *Dalton Trans.*, 2018, 47, 6189-6198.
- 4. M. Arici, Cryst. Growth Des., 2017, 17, 5499-5505.
- J.-C. Jin, J. Wu, Y.-X. He, B.-H. Li, J.-Q. Liu, R. Prasad, A. Kumar and S. R. Batten, *CrystEngComm.*, 2017, 19, 6464-6472.
- 6. C. H. Chen, X. S. Wang, L. Li, Y. B. Huang and R. Cao, Dalton Trans., 2018, 47, 3452-3458.
- 7. Y. Jiang, L. Sun, J. Du, Y. Liu, H. Shi, Z. Liang and J. Li, Cryst. Growth Des., 2017, 17, 2090-2096.
- 8. M.-Y. Sun and D.-M. Chen, Polyhedron, 2018, 147, 80-85.
- 9. Z. J. Wang, F. Y. Ge, G. H. Sun and H. G. Zheng, Dalton Trans., 2018, 47, 8257-8263.
- 10. Z. F. Wu and X. Y. Huang, Dalton Trans., 2017, 46, 12597-12604.
- 11. J.-L. Du, X.-Y. Zhang, C.-P. Li, J.-P. Gao, J.-X. Hou, X. Jing, Y.-J. Mu and L.-J. Li, *Sensors and Actuators B*, 2018, 257, 207-213.
- 12. J.-C. Jin, X.-R. Wu, Z.-D. Luo, F.-Y. Deng, J.-Q. Liu, A. Singh and A. Kumar, CrystEngComm., 2017, 19, 4368-4377.
- 13. Y. T. Yan, W. Y. Zhang, F. Zhang, F. Cao, R. F. Yang, Y. Y. Wang and L. Hou, Dalton Trans., 2018, 47, 1682-1692.