Supporting Information For:

Red-emitting dyes based on phenothiazine modified 2-hydroxychalcone analogues: mechanofluorochromism and gelation-induced emission enhancement

Hongqiang Gao^a, Pengchong Xue^{b,*}, Jiang Peng^a, Lu Zhai^a, Meng Sun^a, Jingbo Sun^a and Ran Lu^{a,*}

^a State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.

E-mail:luran@mail.jlu.edu.cn

^b Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, College of Chemistry, Tianjin Normal University, No. 393, Bin Shui West Road, Tianjin, 300387, China.

E-mail: xuepengchong@126.com

compound	Solvent	$\lambda_{abs}(nm)$	$\lambda_{em}(nm)$	Stokes shift (cm ⁻¹)	$\Phi_{F}{}^{a}$
PTN2	Cyclohexane	293, 435	589, 627	6011	0.01
	Toluene	305, 449	618	6090	0.02
	THF	306, 451	662	7067	0.05
	DCM	306, 454	705	7842	0.03
	DMF	307, 457	715	7895	0.02
PTN4	Cyclohexane	305, 439	590	5830	0.01
	Toluene	308, 449	621	6120	0.02
	THF	307, 450	661	7143	0.04
	DCM	309, 455	706	7814	0.02
	DMF	309, 458	721	7964	0.01
PTN8	Cyclohexane	304, 437	546, 579	4568	0.01
	Toluene	306, 448	620	6192	0.02
	THF	307, 451	660	7021	0.04
	DCM	306, 455	702	7733	0.03
	DMF	307, 458	720	7945	0.01
PTN12	Cyclohexane	300, 440	541, 585	5633	0.01
	Toluene	302, 445	617	6264	0.01
	THF	305, 445	661	7343	0.05
	DCM	306, 455	705	7793	0.03
	DMF	309, 456	721	8108	0.01
PTN16	Cyclohexane	300, 440	541, 578	4243	0.01
	Toluene	300, 445	611	6105	0.01
	THF	304, 445	660	7320	0.05
	DCM	307, 455	703	7753	0.03
	DMF	304, 460	718	7812	0.01

Table S1 Photophysical data of PTNn in different solvents.

^aFluoresce in 1.0×10^{-5} M using Rhodamine 6G in ethylalcohol ($\Phi_F = 0.94$) was used as the standard.

	λ_{abs} (nm)			$\lambda_{em}(nm)$			
	As-synthesized sample	Ground powders	$\Delta\lambda_{abs}$	As-synthesized sample	Ground powders	$\Delta\lambda_{em}$	
PTN2	472	495	23	667	705	38	
PTN4	470	492	22	666	702	36	
PTN8	484	504	20	672	702	30	
PTN12	478	497	19	662	688	26	
PTN16	484	502	18	667	690	23	

 Table S2. Photophysical data of PTNn in different solid-state.

Figure S1 Normalized UV-vis absorption of (a) PTN2, (c) PTN8, (e) PTN16 and normalized fluorescence emission (λ_{ex} =450 nm) spectra of (b) PTN2, (d) PTN8, (f) PTN16 in different solvents (1.0 × 10⁻⁵ M).

Figure S2 Maximum fluorescence emission of (a) PTN2, (b) PTN4, (c) PTN8, (d) PTN12 and (e) PTN16 upon repeating treated by ground and fumed with DCM.

Figure S3 Normalized UV-vis spectra of (a) PTN2, (b) PTN4, (c) PTN8, (d) PTN12 and (e)

PTN16 in different solid-state.

Figure S4 Normalized fluorescent emission spectra of (a) PTN2, (b) PTN4, (c) PTN8, (d) PTN12 excited at 450 nm in different solid-state.

Figure S5 X-ray powder diffraction of (a) PTN2, (b) PTN4, (c) PTN8 and (d) PTN12 in the as-synthesized state and after different treatments.

Figure S6 Time-dependent (a) UV-vis spectra and (b) fluorescence emission spectra of **PTN12** ($\lambda_{ex} = 450$ nm) upon aging the hot solution in *n*-butanol, which is first stimulated by ultrasound.

Figure S7 FT-IR spectra of (a) PTN12 and (b) PTN16 in chloroform(1 wt%), xerogel

obtained from *n*-butanol and powders.

Figure S8 X-ray diffraction pattern of the xerogel (a) PTN12 and (b) PTN16 deposited on a glass slide.

Figure S9 Fluorescence emission spectra of PTN12 in THF/water with different water contents ($\lambda_{ex} = 450$ nm). Inset: the plot of the emission intensities at 660 nm *vs*. water contents.

Figure S10¹H NMR spectrum (400 MHz) of PTN2 in DMSO-d₆.

Figure S11¹³C NMR spectrum (100 MHz) of PTN2 in CDCl₃.

Figure S12 MALDI-TOF spectrum of PTN2.

Figure S13¹H NMR spectrum (400 MHz) of PTN4 in DMSO-d₆.

Figure S14¹³C NMR spectrum (100 MHz) of PTN4 in CDCl₃.

Figure S15 MALDI-TOF spectrum of PTN4.

Figure S16¹H NMR spectrum (400 MHz) of PTN8 in DMSO-d₆.

Figure S17¹³C NMR spectrum (100 MHz) of PTN8 in CDCl₃.

Figure S18 MALDI-TOF spectrum of PTN8.

Figure S19¹H NMR (400 MHz) spectrum of PTN12 in DMSO-d₆.

Figure S20 ¹³C NMR (100 MHz) spectrum of PTN12 in CDCl₃.

Figure S21 MALDI-TOF spectrum of PTN12.

Figure S22 ¹H NMR (400 MHz) spectrum of PTN16 in DMSO-d₆.

Figure S23 ¹³C NMR (100 MHz) spectrum of PTN16 in CDCl₃.

Figure S24 MALDI-TOF spectrum of PTN16.