Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

SUPPLEMENTARY MATERIAL

Investigation of MnO₂ nanoparticles anchored 3D-Graphene Foam Composites (3DGF-MnO₂) as an adsorbent for strontium

adsorption using Central Composite Design (CCD) method

Sibel KASAP^{a,*} Emine NOSTAR^b, İbrahim ÖZTÜRK^b,

^aSabanci University SUNUM, Nanotechnology Research Center, Tuzla, İstanbul, Turkey

^bEge University, Institute of Nuclear Sciences, Bornova, İzmir, Turkey

*Corresponding author

e-mail adress: skasap@sabanciuniv.edu (S.Kasap)

Parameters	Codes	Coded level of parameters				
		-α (-2)	-1	0	+1	+α (+2)
рН	X_1	2	4	6	8	10
Initial Sr ⁺² concentration (mg/mL)	X ₂	10	45	80	115	150
Shaking time (min.)	X_3	10	30	50	70	90
Solid (3D-MGF)/liquid (mg/mL)	X_4	0.4	0.8	1.2	1.6	2

Table S1. Experimental parameters and their levels in CCD.

Coded Factors			Responses, qe(mg/g)			
Run	X ₁	X ₂	X ₃	X4	Experimental Responses	Predicted Responses
1	4	115	70	0.8	23.71	22.71
2	6	80	90	1.2	16.84	16.36
3	4	115	30	0.8	22.77	21.79
4	6	80	50	1.2	15.76	17.59
5	8	115	70	1.6	18.36	19.32
6	6	10	50	1.2	6.41	6.73
7	4	45	70	1.6	10.35	9.32
8	6	80	50	1.2	17.42	17.59
9	8	45	70	0.8	18.58	19.12
10	6	80	50	1.2	15.39	17.59
11	8	45	70	1.6	11.98	12.58
12	8	115	70	0.8	28.90	29.55
13	6	80	50	1.2	20.17	17.59
14	4	45	70	1.6	10.62	10.62
15	6	80	50	0.4	28.73	30.01
16	8	45	30	0.8	22.81	23.25
17	8	115	30	0.8	32.72	32.57
18	4	115	70	1.6	17.46	16.63
19	8	115	30	1.6	20.73	21.34
20	4	45	30	0.8	15.32	13.71
21	10	80	50	1.2	28.54	25.78
22	6	80	50	1.2	18.63	17.59
23	2	80	50	1.2	9.75	13.05
24	8	45	30	1.6	14.35	15.21
25	4	45	70	0.8	14.51	13.51
26	6	80	50	2.0	16.65	15.90
27	6	80	10	1.2	17.08	18.09
28	4	115	30	1.6	14.90	14.21
29	6	150	50	1.2	21.85	22.05
30	6	80	50	1.2	18.17	17.59

Table S2. CCD matrix with coded factors and their results.

 Table S3. ANOVA (analysis of variance) results.

				<i>F-</i>	
	df	SS	MS	value	P-value
Regression	14	1024.65	73.19	21.6	< 0.0001
Residual	15	50.67	3.38		
Total	29	1075.28			

Table S4. Results of Student's t-test.

	Coefficients	Standart Error	P-value
Intercept	17.59	0.75	< 0.0001
x1	3.18	0.38	< 0.0001
x2	3.83	0.38	< 0.0001
x3	-0.43	0.38	0.2695
x4	-3.53	0.38	< 0.0001
x1x2	0.31	0.46	0.5118
x1x3	-0.98	0.46	0.0491
x1x4	-0.91	0.46	0.0655
x2x3	0.28	0.46	0.5536
x2x4	-0.80	0.46	0.1033
x3x4	0.38	0.46	0.4271
x1x1	0.46	0.35	0.2136
x2x2	-0.80	0.35	0.0379
x3x3	-0.09	0.35	0.7988
x4x4	1.34	0.35	0.017

Table S5. Optimum points for adsorption parameters

Parameters		
рН	6.5	
Concentration (mg/L)	142	
Shaking time (min.)	16	
Solid (3D-MGF)/liquid ratio (mg/mL)	0.5	

Table S6. Parameters of Langmuir and Freundlich isotherms for strontium ions sorption on 3D-MGF.

Model	Parameters	
	q _{max} (mg.g ⁻¹)	47.39
Langmuir	b (L.mg ⁻¹)	0.03
	R ²	0.95
	К	18.79
Freundlich	n	7.65
	R ²	0.99
	R ²	0.99

 Table S7 Parameters of D-R isotherm for strontium ions sorption on 3D-MGF.

D-R		
C _m (mol.g ⁻¹)	K (mol ² kJ ⁻²)	R ²
0.02	-0.01	1.000

 Table S8 Thermodynamic parameters of strontium ions sorption on 3D-MGF.

			ΔGº (kJ.mol ⁻¹)				
	∆Hº (kJ.mol ⁻¹)	ΔS° (kJ.mol ⁻¹ K ⁻ 1)	293 K	303 K	313 K	323 K	333 K
3D-MGF	-20.08	0.02	-26.60	-26.82	-27.04	-27.26	-27.48

Figure S1. N₂ adsorption/desorption curves for 3DGF

Figure S2. N_2 adsorption/desorption curves for 3DGF-MnO₂