Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Electronic Supplementary Information (ESI)

Encapsulation and removal of aniline by di-cyclohexanocucurbit[6]uril

Mingli Zhang,^a Hao Shi,^b Di Meng,^b Kai Chen,^{*c} Rui-Lian Lin,^b Wen-Qi Sun,^b and Jing-Xin Liu*^b

Table of Contents

Figure S1: ¹ H NMR of the guest 1 ⁺ binding with the Cy6Q[6] Figure S2: ¹ H NMR of the guests 2 ⁺ binding with Cy6Q[6] Figure S3: ¹ H NMR of the guest 3 ²⁺ binding with Cy6Q[6] Figure S4: The chemical shifts and splitting of the Cy2Q[6] protons Figure S5-S7: ORTEP diagram of the compounds 1-3 Figure S8-S10: ¹ H NMR of the compounds 1-3	2 3 4 5 6-8	
		9-11

^a Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University (NNU), Nanjing 210023, China

^b College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China. Email: jxliu411@163.com

^c Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, P. R. China. Email: catgchen@163.com

Figure S1. ¹H NMR spectra (400 MHz) of guest 1^+ (2.0 mM) in absence (a) and presence of 0.37 (b) equiv of Cy6Q[6] in D₂O at 20 °C. (c) shows the ¹H NMR spectrum (400 MHz) of Cy6Q[6] (2.0 mM) in 0.50 ml D₂O at 20 °C.

Figure S2. ¹H NMR spectra (400 MHz) of guest 2^+ (2.0 mM) in absence (a) and presence of 0.32 (b) equiv of Cy6Q[6] in D₂O at 20 °C. (c) shows the ¹H NMR spectrum (400 MHz) of Cy6Q[6] (2.0 mM) in 0.50 ml D₂O at 20 °C.

Figure S3. ¹H NMR spectra (400 MHz) of guest 3^{2+} (2.0 mM) in absence (a) and presence of 0.12 (b) equiv of Cy6Q[6] in D₂O at 20 °C. (c) shows the ¹H NMR spectrum (400 MHz) of Cy6Q[6] (2.0 mM) in 0.50 ml D₂O at 20 °C.

Figure S4. The chemical shifts and splitting of the Cy2Q[6] protons.

Figure S5. ORTEP diagram of the compound 1; displacement ellipsoids are drawn at the 30% probability level. Solvate water molecules are omitted for clarity.

Figure S6. ORTEP diagram of the compound **2**; displacement ellipsoids are drawn at the 30% probability level. Solvate water molecules are omitted for clarity.

Figure S7. ORTEP diagram of the compound **3**; displacement ellipsoids are drawn at the 30% probability level. Solvate water molecules are omitted for clarity.

Figure S8. ¹H NMR spectrum of the compound 1 (2.0 mM) in D_2O at 20 °C.

Figure S9. ¹H NMR spectrum of the compound **2** (2.0 mM) in D_2O at 20 °C.

Figure S10. ¹H NMR spectrum of the compound **3** (2.0 mM) in D_2O at 20 °C.