Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplementary material

Porous boron nitride nanoribbons with large width as superior

adsorbents for the rapid removal of cadmium and copper ions from

water

Tao Liu^{a, b}, Yulian Li^{a, b}, Junyong He^{a, b}, Kaisheng Zhang^{a, *}, Yi Hu^{a, b}, Chengming Wang^c, Xingjiu Huang^a, Lingtao Kong^{a, *}, and Jinhuai Liu^a

^a Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.

^b Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China.

^c Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, PR China.

Corresponding Author

*E-mail address: ltkong@iim.ac.cn (L. T. Kong), Fax: +86-551-65592420; Tel: +86-551-65591142.

Fig. S1 The the mapping element of image of B, N, and C on BNNRs.

Fig. S2 The nitrogen adsorption-desorption isotherm of BNNRs, and inset is the

pore-size distribution curve of BNNRs.

Fig. S3 The effect of equilibrium time on removal of cadmium (A) and copper (B) ions in stirring speed.

 Table S1 Comparison of the adsorption capacity and of the reported boron nitride

		synthesis	adsorption	Reference
adsorbent sample	ions	temperature		
		(°C)	capacity(mg/g)	
cheese-like carbon	Cd ²⁺	1100	482.1	1
boron nitride				
nanosheet-structured	Cd ²⁺	1300	107.0	2
boron nitride spheres				
BNNRs	Cd ²⁺	550	530.0	this work
the urchin-like boron	Cu ²⁺	1400	02.8	3
nitride	Cu	1400	92.0	
BNNRs	Cu ²⁺	550	331.0	this work

(synthesis temperature) for removal of heavy metal ions.

Thermodynamic Models

The standard free energy change (ΔG^0) is calculated from the following equation ⁴:

$$\Delta G^0 = -RTInK^0$$

where R is the ideal gas constant (8.314 J mol⁻¹ K⁻¹), K° is the adsorption equilibrium constant. Values of $\ln K^0$ are obtained by plotting $\ln K_d$ ($K_d = \frac{C_0 - C_e}{C_e} \times \frac{V}{m}$) versus C_e and extrapolating C_e to zero, the value of Y-axis is the value of $\ln K^0$.

The standard enthalpy change (ΔH^0) and the standard entropy (ΔS^0) are calculated from the plot of ln K⁰ versus 1/T for Pb²⁺ adsorptions by the following equation ⁵⁴³²[2]:

$$\ln K^{0} = \frac{\Delta S^{0}}{R} - \frac{\Delta H^{0}}{RT}$$

Calculation of thermodynamic data

The ln K_d as function of C_e at T = 298.15 K, 308.15 K and 318.15 K is given in Fig. S1. The Cd²⁺ adsorption equilibrium constants (K⁰) at different temperature are obtained by linear extrapolating C_e to zero, ln K⁰ = 2.15 at T = 298.15 K, ln K⁰ = 2.29 at T = 308.15 K, and ln K⁰ = 2.43 at T = 318.15 K, and ΔG^0 = -5.32 kJ/mol at 298.15 K, -5.86 kJ/mol at 308.15 K, and -6.42 kJ/mol at 318.15 K, respectively. The values of ΔH^0 and ΔS^0 can be obtained from the plot of ln K⁰ vs. 1/T (Fig. S4A(inset)). The value of ΔH^0 and ΔS^0 is calculated to be 11.82 kJ/mol and 58.2 J/mol K, respectively. Similarly, The Cu²⁺ adsorption equilibrium constants (K⁰) at different temperature are obtained by linear extrapolating C_e to zero, ln K⁰ = 1.69 at T = 298.15 K, ln K⁰ = 1.81 at T = 308.15 K, and ln K⁰ = 1.89 at T = 318.15 K, and ΔG^0 = -4.21 kJ/mol at 298.15 K, -4.62 kJ/mol at 308.15 K, and -5.00 kJ/mol at 318.15 K, respectively. The values of ΔH^0 and ΔS^0 can be obtained from the plot of ln K⁰ vs. 1/T (Fig. S4A(inset)). The value of ΔH^0 and ΔS^0 was calculated to be 7.47 kJ/mol and 39.2 J/mol K, respectively.

Fig. S4 Linear plots of InK_d vs C_e for the adsorption of (A) Cd^{2+} and (B) Cu^{2+} ions ions on the BNNRs at 298.15, 308.15 and 318.15 K, (inset) Linear plot of InK^0 vs 1/T for the adsorption of lead ions on the BNNRs at 298.15, 308.15 and 318.15 K.

Table S2 The thermodynamic parameters of removal Cd^{2+} and Cu^{2+} ions on the BNNRs.

	Т (К)	ΔH ⁰ (kJ/mol)	ΔS ⁰ (J/mol)	ΔG ⁰ (kJ/mol)
Cd ²⁺	298.15	11.82	58.2	-5.32
	308.15			-5.86
	318.15			-6.42
Cu ²⁺	298.15	7.47	39.2	-4.21
	308.15			-4.62
	318.15			-5.00

References

1. Z. Liu, Y. Fang, H. Jia, C. Wang, Q. Song, L. Li, J. Lin, Y. Huang, C. Yu and C. Tang, *Scientific Reports*, 2018, **8**, 1104.

2. F. Liu, J. Yu, X. X. Ji and M. Q. Qian, *ACS Appl. Mater. Interfaces*, 2015, **7**, 1824-1832.

3. H. Wang, W. Wang, H. Wang, F. Zhang, Y. Li and Z. Fu, *Ceramics International*, 2018.

4. Y. Wang, N. P. Chen, W. Wei, J. Cui and Z. G. Wei, *Desalination*, 2011, **276**, 161-168.

5. D. Zhang, H. Luo, L. Zheng, K. Wang, H. Li, Y. Wang and H. Feng, *J Hazard Mater*, 2012, **241-242**, 418-426.