Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information (ESI) for

Microwave-assisted fabrication of multicolor photoluminescent carbon dots as ratiometric fluorescence sensor for iron ions

Zhongqi Sun^a, Zhaoyu Yang^a, Li Zhao^b, Yuheng Zhang^a, Yongqi Li^a, Juan Hou^{*a}, Lan Ding^{*b}

^aDepartment of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin

150040, China

^bCollege of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China

Experimental section

Preparation of M-CDs

Firstly, 0.55 g of three benzenediol isomers (*o*-benzenediol, *m*-benzenediol and *p*-benzenediol) was dissolved in 15 mL of ultrapure water, respectively. And then a certain amount of hydrazine hydrate was added into the solutions (Table S1). After sonication for 5 min, the mixture was heated in a household microwave oven with the power of 750 W. The products became deep-brown dry solids. The resultant three kinds of CDs (named *o*-M-CDs, *m*-M-CDs and *p*-M-CDs, respectively) were cooled to room temperature and dispersed in ethanol. The colors of *o*-M-CDs, *m*-M-CDs and *p*-M-CDs solutions were reddish-brown, yellowish-brown and brown, respectively. The solutions were further purified by filter and dialysis.

The effect of hydrazine hydrate on the product yield has been listed in Fig. S17. Different amounts of hydrazine hydrate used might be attributed to the differences in molecular structures and steric hindrance effect of three benzenediol isomers. In this experiment, *o*-benzenediol has larger steric hindrance effect, and the reaction seems more difficult. And the products from *o*-benzenediol show a relatively low product yield.

Controlled experiments

Synthesis of CDs-1: 0.55 g of *m*-benzenediol was firstly dissolved in 15 mL ultrapure water, and then 2 mL of ammonium hydroxide were inject. The mixture was sonicated for 5 min and heated in an ordinary household microwave oven at 750 W for 16 min. The products became brown dry solids. After cooling to room temperature, the products were dispersed in water and purified by filter and dialysis.

Synthesis of CDs-2: 0.55 g of *m*-benzenediol and 0.20 g of potassium borohydride were added into 15 mL ultrapure water. The mixture was also sonicated for 5 min and heated in an ordinary household microwave oven at 750 W for 16 min. The products became golden-yellow dry solids. After cooling to room temperature, the products were dispersed in water and purified by filter and dialysis.

Fig. S1 UV-vis spectra of the o-M-CDs (a), m-M-CDs (b), and p-M-CDs (c), respectively.

Fig. S2 FL decay curves of *m*-M-CDs at emissions of 340 nm, 430 nm and 550 nm detected at different excitation wavelengths as indicated.

Fig. S3 (a) FL spectra of the *o*-M-CDs under different excitation wavelengths. (b) FL emission photographs of the *o*-M-CDs recorded from 280 to 580 nm in 10 nm increments. The spectra and photographs were obtained by the *o*-M-CDs dispersed in ethanol.

Fig. S4 (a) FL spectra of the *p*-M-CDs under different excitation wavelengths. (b) FL emission photographs of the *p*-M-CDs recorded from 280 to 580 nm in 10 nm increments. The spectra and photographs were obtained by the *p*-M-CDs dispersed in ethanol.

Fig. S5 TEM images of the *m*-M-CDs of three different batches under the same preparation conditions.

Fig. S6 FL spectra of the *m*-M-CDs from three different batches under the same preparation conditions.

Fig. S7 FL spectra of the *m*-M-CDs dispersed in different solvents (ethanol, dimethyl sulfoxide and water).

Fig. S8 TGA analysis of the *m*-M-CDs.

Fig. S9 (a-b) Effect of longtime storage (1 month) on the FL properties of the *m*-M-CDs; (c-d) effect of continuous UV irradiation (365 nm for 90 min) on the FL properties of the *m*-M-CDs.

Fig. S10 The effect of pH on the emission wavelength and FL intensity of the *m*-M-CDs at various excitation wavelengths, (a) λ_{ex} =300 nm, (b) λ_{ex} =360 nm, (c) λ_{ex} =470 nm and (d) λ_{ex} =540 nm.

Fig. S11 (a) TEM image, (b) XRD pattern, (c) UV-vis spectrum and (d) FL emission spectra of the CDs-1 derived from microwave treatment of ammonium hydroxide and *m*-benzenediol.

Fig. S12 (a) TEM image, (b) XRD pattern, (c) UV-vis spectrum and (d) FL emission spectra of the CDs-2 derived from microwave treatment of potassium borohydride and *m*-benzenediol.

Fig. S13 FL excitation spectra of the as-prepared *m*-M-CDs at 368 nm, 430 nm, 560 nm and 605 nm, respectively.

Fig. S14 The FL spectra of *m*-M-CDs with different amount of hydrazine hydrate used.

Fig. S15 The quenching efficiencies of a variety of metal ions (10 μ M) with the same concentration to the four dominate emission maxima of the *m*-M-CDs, a) pH=7; b) pH=5.

Fig. S16 Fluorescence quenching of Fe^{3+} on the *m*-M-CDs at different pH (a) and incubation times (b) (the concentration of Fe^{3+} is 10 μ M).

Fig. S17 The effect of amount of hydrazine hydrate on the product yield.

Nano	Reactant	Microwave power (W)	Amount of hydrazine hydrate (mL)	Reaction time (min)	Product yield	Fluorescer	FL quantum	
materials					of the M-CDs	λex(nm)	λem(nm)	yield (%)
		750	2	20	33%	300	360	26.2
						340	425	10.4
o-M-CDs	o-benzenedioi					450	545	9.3
						560	620	8.7
	<i>m</i> -benzenediol	750	0.5	16	58%	300	370	13.8
						360	430	19.6
<i>m</i> -M-CDs						470	560	17.4
						540	604	10.6
						340	394	12.5
<i>p</i> -M-CDs	<i>p</i> -benzenediol	benzenediol 750	1	15	76%	350	426	8.2
						470	558	21.5
						520	585	9.4

 Table S1. Comparison of preparation conditions and fluorescence properties of the resultant M-CDs.

λex (nm)	λem (nm)	$ riangle \lambda$ (nm)	FHWM (nm)	Intensity
280	337	55	_	750
290	358	66	68	844
300	371	68	52	931
310	373	59	53	784
320	375	54	_	572
330	392	62	_	507
340	419	79	96	398
350	425	75	89	670
360	430	70	88	893
370	439	69	_	832
380	451	71	_	565
390	544	154	_	493
400	550	150	_	573
410	550	140	90	637
420	551	131	85	672
430	552	122	81	681
440	554	114	77	692
450	556	106	83	707
460	558	98	86	746
470	560	90	89	778
480	564	84	90	674
490	576	86	82	616
500	584	84	93	573
510	592	82	88	559
520	597	77	78	567
530	600	70	67	591
540	605	65	64	603
550	606	56	60	582
560	607	47	55	542
570	607	37	_	522
580	611	31	_	418

 Table S2. FL properties of *m*-M-CDs

 $\triangle\lambda$ (nm)= λ em- λ ex; FWHM=full width at half maximum.

	0 F		· · · · · · · · · · · · · · · · · · ·	0				
λ_{ex}/nm	τ_1/ns	\mathbf{B}_1 /%	τ_2/ns	B_2 /%	τ_3/ns	B ₃ /%	$\tau_{avg}\!/\!ns$	χ^2
280	1.26	35.4	2.94	55.0	7.31	9.6	2.76	1.008
360	1.72	27.0	3.57	62.0	7.89	11.0	3.55	1.020
400	1.65	33.2	4.24	58.2	8.44	8.6	3.74	1.112

 Table S3. Fitting parameters of the corresponding FL decay curves for *m*-M-CDs.

		D raduat yield $(0/)$	Avorago giza (nm)	Fluorescence property		
		Product yield (76)	Average size (IIII)	$\lambda ex(nm)$	λem(nm)	
				300	360	
	Batch 1	33	13.4	340	425	
	2000011		1011	450	545	
				560	620	
				300	358	
o-M-CDs	Batch 2	36	13.2	340	422	
0-101-CD5	Daten 2	50	13.2	450	545	
				560	617	
				300	360	
	Datab 2	20	12.5	340	425	
	Datch 5	28	15.5	450	547	
				560	622	
				300	370	
				360	430	
	Batch 1	58	9.7	470	560	
				540	604	
	Batch 2	56		300	371	
				360	430	
<i>m</i> -M-CDs			9.7	470	562	
				540	604	
		52		300	369	
	Batch 3			360	434	
			9.9	470	562	
				540	605	
				• • • •	• • •	
	Batch 1	76		340	394	
			10.1	350	426	
				470	558	
				520	585	
	Batch 2	78		340	395	
<i>n</i> -M-CDs			10.3	350	425	
p m cb3				470	556	
				520	584	
		71		340	395	
	Batch 3		10.4	350	428	
			10.7	470	560	
				520	586	

Table S4. Comparison of three batches of the M-CDs under the same preparation conditions. The minor differences of the FL properties are due to their slight differences in concentrations.

Tap samples	Spiked (µM)	Measured	Recovery (%)	RSD (n=3, %)
1	2.0	1.82	91	6
	10.0	9.86	99	3
2	2.0	1.92	96	4
	10.0	9.74	97	4
3	2.0	1.86	93	5
	10.0	9.83	98	3

Table S5. Analytical results for the determination of Fe^{3+} in the real water samples.

CDs preparation method	Samples	Linear range	LOD (µM)	Recoveries (%)	RSD (%)	Ref.
Urea+diethylene glycol->Microwave-assisted method	Serum	1.6-333.3 μM	0.45	93-108	3.4	14
Citric acid+Tris \rightarrow Hydrothermal method	Water	2-50 μM	1.3	97.4-108.1	Not given	15
$Urea+EDTA \longrightarrow Oil bath$	—	0-2 mM	0.0136	Not given	Not given	16
Aspartic acid+NH ₄ HCO ₃ \longrightarrow Microwave-assisted method	—	0-50 μΜ	0.26	Not given	Not given	S1
Citric acid+ethanediamine \rightarrow Hydrothermal method \rightarrow Bacterial cellulose assemble	_	0-600 μΜ	0.084	Not given	Not given	S2
Maminobenzoic acid \rightarrow Hydrothermal method	Water	0-1.2 μΜ	0.05	Not given	Not given	S3
P. avium fruits+aqueous ammonia \rightarrow Hydrothermal method	Water	0-100 μΜ	0.96	Not given	Not given	S4
PEG-diamine+citric acid \longrightarrow Solid phase synthesis	Biological samples	0.01-500 μM	0.025	96.65-104.02	<2.32	S5
Benzenediol+hydrazine hydrate->Microwave-assisted method	Water	0.1 M-20 μM	0.01	91-99	<6	This work

 Table S6 Comparison of analytical data with previous CDs-based sensors for Fe³⁺ detection.

References

- S1. C. Zhang, Y. Cui, L. Song, X. Liu and Z. Hu, Talanta, 2016, 150, 54-60.
- S2. P. Lv, Y. Yao, D. Li, H. Zhou, M. A. Naeem, Q. Feng, J. Huang, Y. Cai and Q. Wei, *Carbohyd. Polym.*, 2017, **172**, 93-101.
- S3. R. Wang, X. Wang and Y. Sun, Sensor. Actuat. B-Chem, 2017, 241, 73-79.
- S4. T. Edison, R. Atchudan, J.-J Shim, S. Kalimuthu, B.-C. Ahn, Y. R. Lee, J. Photoch. Photobio. B, 2016, 158, 235-242.
- S5. H. Zhang, Y. Chen, M. Liang, L. Xu, S. Qi, H. Chen and X. Chen, Anal. Chem., 2014, 86, 9846-9852.