Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supporting Information for

Development of rhodamine-based fluorescent probes for sensitive detection of Fe³⁺ in water: Spectroscopic and computational investigations⁺

Zi-ying Wu¹, Zhong-yong Xu¹, Jin-wu Yan^{1,2*}, Yafang Li³, Qiuye Kou³ and Lei Zhang^{1,2*}

¹ School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China.

² Guangdong Provincial Engineering and Technology Research Center of Biopharmceuticals, South China University of Technology, Guangzhou 510006, PR China..

³ The Sixth Affiliated Hospital of Sun Yat-Sen University, 26th Yuancun Road II, Guangzhou 510655, P. R. China.

* Corresponding Authors.

School of Biology and Biological Engineering,

South China University of Technology

Guangzhou 510006, P. R. China.

Tel: +86 20 39380678.

E-mail address: yjw@scut.edu.cn *(J.-W. Yan); lzhangce@scut.edu.cn *(L. Zhang).

List of contents

Supporting figures	
Fig. S1	3
Fig. S2	3
Fig. S3	4
Fig. S4	4
Fig. S5	4
Fig. S6	5
Fig. S7	5
Fig. S8	5
Fig. S9	5
Fig. S10	6
Fig. S11	6
Supporting tables	
Table S1	7
Table S2	7
Table S3	8
Supporting NMR spectra	9

(I) Supporting figures

Fig. S1 The fluorescence intensity of probes **RE1-RE4** (10 μ M) at the maximum emission with immersion time in Fe³⁺ water solution of 20 μ M, $\lambda_{ex} = 530$ nm.

Fig. S2 Effect of pH studies on fluorescence intensity at 581 nm of probes (RE1- RE4) and probes-Fe³⁺.

Fig. S3 UV-vis absorbance titration spectra of probes (RE1-RE4) with Fe³⁺ in water solution.

Fig. S4 Fluorescence emission spectra of **RE1**, **RE3** and **RE4** with 0-2 equiv. Fe³⁺ in water solutions. Inset: Emission intensity changes of **RE1**, **RE3** and **RE4** ($\lambda_{ex} = 530$ nm).

Fig. S5 Detection limits of **RE1**, **RE3** and **RE4** with Fe³⁺. The fluorescence intensity at maximum emission wavelength of **RE1**, **RE3** and **RE4** (10 μ M) with different concentrations of Fe³⁺ in water solutions ($\lambda_{ex} = 530$ nm, slit: 10/10 nm).

Fig. S6 Digital photograph of **RE2** with Fe^{3+} (2 equiv.) or without Fe^{3+} under sunlight and UV-light (365 nm).

Fig. S7 Fluorescence spectra of **RE1**, **RE3** and **RE4** upon addition of 2 equiv. various ions in water solutions ($\lambda_{ex} = 530$ nm).

Fig. S8 The competitive selectivity of **RE1**, **RE3** and **RE4** were examined with 2 equiv. Fe³⁺ in the presence of various ions in water solutions ($\lambda_{ex} = 530$ nm).

Fig. S9 Job's plots of **RE1**, **RE3** and **RE4** with Fe³⁺ ($\lambda_{ex} = 530$ nm). The total concentrations of probes (**RE1**, **RE3** and **RE4**) with Fe³⁺ are 10 μ M. The experiments were measured at room temperature in water solutions.

Fig. S10 The binding association constants of **RE1**, **RE3** and **RE4** with Fe³⁺ were based on a Benesi-Hildebrand plot.

Fig. S11 Cytotoxicity of **RE2** in Hela cells. Cells were treated with different concentrations of **RE2** for 12 h and cell viability assay was determined by MTT assay. Data were expressed as means \pm SD.

(II) Supporting tables

Probes	$\Phi_{\rm probe}$	Probes $+ Fe^{3+}$	$\Phi_{(\text{Probes + Fe}^{3+})}$
RE1	0.06	RE1 + Fe ³⁺	0.25
RE2	0.02	$RE2 + Fe^{3+}$	0.20
RE3	0.06	$RE3 + Fe^{3+}$	0.26
RE4	0.08	RE4 + Fe ³⁺	0.29

Table S1 The fluorescence quantum yields of probes before and after the addition of Fe^{3+}

Table S2 Comparison of **RE2** with other reported Fe³⁺ fluorescent probes

Name	Structure	Medium	Ka (M ⁻¹)	LOD (nM)	Ref.
R1		EtOH-H ₂ O (1:1, v/v)	7.66×10 ⁴	28.1	<i>Spectrochim.</i> <i>Acta, Part A</i> , 2018, 191 , 566- 572
1		C ₂ H ₅ OH-Tris - HCl buffer (1/9, v/v, pH = 7.0)	8.11× 10 ⁴	42	Sens. Actuators, B, 2017, 247 , 461-468
1		HEPES buffer solution (1.0 mM, pH 7.0).	2.88×10 ⁵	92	<i>J. Lumin.</i> , 2018, 196 , 379-386
RTT		C ₂ H ₅ OH-H ₂ O (1/4, v/v)	2.95×10 ⁴	130	Sens. Actuators, B, 2017, 252 , 1140-1145
HL	HO O N'N NNH	MeOH	1.14×10 ⁴	140	<i>J. Photoch.</i> <i>Photobio. A</i> , 2018, 351 , 1-7

RDFB		CH ₃ CN-HEPES buffer (8/2, v/v , pH = 7.2)	1.13×10 ⁵	6600	Sens. Actuators, B, 2017, 245 , 395-405
RL	NC N-N N-N N-N N-N	DMSO-H ₂ O (1/1, v/v)	4.67×10 ⁸	280	Dyes Pigm, 2017, 142 , 429- 436
1	N-N N-N N-N	CH ₃ CN-Tris-HCl (1/1, v/v, 10 mM, pH = 7.4)	2.98×10 ⁴	44.1	<i>Sens. Actuators, B</i> , 2016, 237 , 605-612
L	N N N N N N N N N N N N N N N N N N N	MeOH-H ₂ O (1/1, v/v)	0.67×10 ⁴	57	<i>Sens. Actuators,</i> <i>B</i> , 2016, 237 , 501-508
RE2	N N N N N N N N N N N N N N N N N N N	H ₂ O	2.87×10 ⁵ M ⁻¹	18.6	Present work

Table S3 Detection of Fe^{3+} by **RE2** in water samples (n=3)

Sample	The concentration of Fe ³⁺		Recovery
-	Added (µM)	Found (µM)	
Drinking Water	10.0	9.89 ± 0.01	98.9%
Tap Water	10.0	10.09 ± 0.01	100.9%
River Water	10.0	10.22 ± 0.02	102.2%

