Supplementary Material

Microwave-assisted Synthesis, Characterization, Cell Imaging of Fluorescent Carbon Dots Using L-Asparagine as Precursor

Xi Wang,^a Tian Gao,^a Mian Yang,^c Jie Zhao,^a Feng-Lei Jiang^b and Yi Liu^{*a,b,c}

- a. State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- b. College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, P. R. China
- c. School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China

Corresponding Authors

*E-mail: yiliuchem@whu.edu.cn. Tel: +86-27-68753465 (Y.L.).

1. Theoretical calculated result of relative content of N, C, O in the 20 amino acids.

Atomic content/%	Ν	С	0	S
Alanine (C ₃ H ₇ NO ₂)	17.18	43.93	38.99	
Arginine $(C_6H_{14}N_4O_2)$	35.00	45.01	19.99	
Asparagine (C ₄ H ₈ N ₂ O ₃)	22.73	38.73	38.70	
Aspartic acid (C ₄ H ₇ NO ₄)	11.12	38.12	50.76	
Cysteine (C ₃ H ₇ NO ₂ S)	12.29	31.62	14.04	28.14
Glutamic acid (C ₅ H ₉ NO ₄)	10.15	43.50	46.35	
Glutamine (C ₅ H ₁₀ N ₂ O ₃)	20.60	44.14	35.26	
Glycine (C ₂ H ₅ NO ₂)	20.01	34.30	45.69	
Histidine (C ₆ H ₉ N ₃ O ₂)	28.77	49.33	21.90	
Isoleucine (C ₆ H ₁₃ NO ₂)	11.87	61.05	27.08	
Leucine ($C_6H_{13}NO_2$)	11.87	61.05	27.08	
Lysine $(C_6H_{14}N_2O_2)$	21.21	54.56	24.23	
Methionine (C ₅ H ₁₁ O ₂ NS)	10.14	43.48	23.17	23.21
Phenylalanine	9.09	70.15	20.76	
(C ₉ H ₁₁ NO ₂)				
Proline (C ₅ H ₉ NO ₂)	13.21	56.63	30.16	
Serine (C ₃ H ₇ NO ₃)	14.29	36.75	48.96	
Threonine (C ₄ H ₉ NO ₃)	12.73	43.66	43.61	

Table S1 Relative contents of C, O, N in the 20 amino acids.

$Tryptophan (C_{11}H_{12}N_2O_2)$	14.58	68.76	16.66
Tyrosine (C ₉ H ₁₁ NO ₃)	8.24	63.55	18.81
Valine (C ₅ H ₁₁ NO ₂)	13.21	56.63	30.16

2. Photos of A-CDs under powder and solution condition.

Yellow powders of A-CDs were got by freeze drying (Figure S1a). And dissolving these yellow powders into deionized water, a light yellow solution was obtained (Figure S1b). Put the A-CDs solution under a 365 nm UV irradiation lamp, it emits a bright blue photoluminescence.

Fig. S1 Photos of A-CDs. (a) The powder of A-CDs after vacuum freezing drying. (b) The A-CDs solution in white light. (c) The A-C solution under 365 nm excitation.

3. Dynamic Light Scattering result of A-CDs

Figure. S2 The Dynamic Light Scattering result of A-CDs.

4. Elemental content of A-CDs.

The relative elemental contents of A-CDs were determined by XPS. The relative contents of C, O, N were 58.03%, 32.53%, 9.44%, indicating the doping of nitrogen atoms.

Table S2 Re	lative contents	of	C,	О,	N.
-------------	-----------------	----	----	----	----

Atomic content/%	С	0	Ν	
	58.03	32.53	9.44	

5. Possible structure of A-CDs.

Fig. S3 Possible structure of A-CDs.

6. PL lifetime of A-CDs.

The average lifetimes were calculated using the equation below:

$$\tau_{average} = \sum_{i=1}^{n} \frac{a_i \cdot \tau_i^2}{\sum_{i=1}^{n} \tau_i}$$

In the equation, τ means the decay lifetime, α is the fractional contribution of decay lifetime, *n* stands for total number of fractions, and i represents each fraction.

Fig. S4 The time-correlated single-photon counting (TCSPC) of C-dots (360 nm excitation, decay time at 450 nm).

7. Quantum yield calculation of A-CDs.

The quantum yield of A-CDs was measured by reference method, using quinine sulfate (QS) in 0.1 M H_2SO_4 as reference. The quantum yield calculation of A-CDs was according to the equation below:

$$Q = Q_R \cdot \frac{I}{I_R} \cdot \frac{A_R}{A} \cdot \frac{n^2}{n_R^2} (2)$$

In the equation, Q represents the quantum yield, I means the integrated emission intensity measured by FL emission spectroscopy, A is the UV-vis absorbance at PL

excitation wavelength, *n* stands for the refractive index, and *R* is the reference.

Fig. S5 Liner fitting of integrated emission intensity and absorbance of Quinine Sulfate (a) and A-CDs (b).

Table S3	Calculation	of the q	uantum v	yield	of A-CDs
----------	-------------	----------	----------	-------	----------

Sample	Integrated emission Intensity (<i>I</i>)/ Absorbance (<i>A</i>)	Refractive index of solvent (<i>n</i>)	Quantum yield (<i>Q</i>)
Quinine Sulfate	2975870	1.34	55.7%
A-CDs	419330	1.34	7.8%

More than four groups of data were used to obtain the liner fitting of each sample (Figure S3). Results were shown in Table S2, the quantum yield of A-CDs was 7.8%, using Quinine Sulfate as standard.

8. Photos and PL emission spectrum of A-CDs after stored for over 6 months, and antiphotobleaching property of A-CDs.

The A-CDs could still emit bright blue photoluminescence, as shown in Figure S5 inset photograph. And the fluorescent intensity of A-CDs remains over 80%, after being irradiated under 365 nm UV lamp for 2 hours.

Fig. S6 (a)The PL emission spectrum of A-CDs under maximum excitation. Inset: photographs of A-CDs solution in room light (left) and in 365 nm UV irradiation lamp (right). (b) Antiphotobleaching property of A-CDs under irradiation of a 365 nm UV lamp.

9. Stability of A-CDs in various conditions.

There was no obvious PL intensity change of A-CDs under various conditions including of persistent excitation, different pH solutions, different ionic strengths, and different incubation time in DMEM culture.

Fig. S7 Stability of A-CDs. (a) Dependence of fluorescence intensity on persistent excitation times for the A-CDs. (b) Effect of pH on the fluorescence intensity of the A-CDs. (c) Effect of ionic strengths on the fluorescence intensity of the A-CDs (ionic strengths were controlled by various concentrations of NaCl). (d) Dependence of A-CDs PL emission intensity on incubation time in DMEM culture.

10. Influence of various ions on A-CDs in PBS buffer.

As illustrated in Figure S8, there is nearly no influence on the PL intensity of the A-CDs when the A-CDs' solution mix with various ions (up to 400 μ M) in PBS buffer.

Fig. S8 Normalized PL emission intensity of A-CDs in PBS buffer with 400 μ M ions.

References

- X. Dong, L. Wei, Y. Su, Z. Li, H. Geng, C. Yang, Y. Zhang, Efficient long lifetime room temperature phosphorescence of carbon dots in a potash alum matrix, *J. Mater. Chem. C*, 2015, **3**, 2798-2801.
- 2 J. W. Eastman, Quantitative spectrofluorimetry The fluorescence quantum yield of quinine sulfate, *Photochem. Photobiol.*, 1967, **6**, 55-72.