Supplementary Information

Thiophene containing microporous and mesoporous nanoplates for separation of mercury from aqueous solution

Arindam Modak,^a Sankar Das,^b Dipak Kr. Chanda,^c Arnab Samanta^b and Subhra Jana*^{a,b}

^aTechnical Research Centre, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata -700 106, India.

^bDepartment of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Block - JD, Sector-III, Salt Lake, Kolkata -700 106, India.

^cSchool of Materials Science and Nanotechnology, Jadavpur University, Kolkata, India.

E-mail: subhra.jana@bose.res.in.

Fig. S1 ¹H NMR of (a) 1,3,5-Tris(2-thienyl)benzene and (b) 2-acetyl thiophene.

Fig. S2 Elemental mapping of C, Fe, S in Th-2 polymer.

Fig. S3 TGA spectra of Th-1, Th-2 and Th-3 polymers.

Fig. S4 Adsorption capacity of Hg(II) using Th-1, Th-2 and Th-3 polymers.

Fig. S5 EDAX spectra of Th-1, Th-2 and Th-3, suggesting that 8, 20 and 10 wt% of sulfur is present in Th-1, Th-2 and Th-3 respectively. The strong Si peak in the spectra is because of the sampling in silicon wafer.

Fig. S6 Adsorption capacity of Th-2 estimated in the range of pH 2-11, having concentration of Hg(II) solution 200 mg L⁻¹.