Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

## Band gap engineering of BiOI via Oxygen Vacancy induced by graphene for improved

## photocatalysis

Xuejun Ren, Jingwen Yao, Lei Cai, Jibiao Li, Xingzhong Cao, <sup>b</sup> Yanfeng Zhang, \*<sup>a</sup> Baoyi Wang <sup>b</sup> and Yu Wei<sup>a</sup>

a.National Demonstration Center for Experimental Chemistry Education College of Chemistry and Material Science.Hebei Normal University, Shijiazhuang, 050024 (P. R. China).

b.Multi-discipline Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.



Figure S1: Adsorption curves of MO by BiOI and rGO-BiOI nanocomposites samples.



Figure S2: The mineralization rate of rGO<sub>1/400</sub>-BiOI for MO



Figure S3: (a) Zero-order kinetics (b) second-order kinetics of degradation for MO over BiOI and rGO-BiOI.

| Table | S1. | Fitted | results | of MO | degradation | over BiOI an | 1 rGO-BiOI |
|-------|-----|--------|---------|-------|-------------|--------------|------------|
|       |     |        |         |       |             |              |            |

| catalysts                   | BiOI    | rGO <sub>1/200</sub> -BiOI | rGO <sub>1/400</sub> -BiOI | rGO <sub>1/600</sub> -BiOI | rGO <sub>1/800</sub> -BiOI | rGO <sub>1/1000</sub> -BiOI |
|-----------------------------|---------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|
| zero order R <sup>2</sup>   | 0.984   | 0.959                      | 0.916                      | 0.975                      | 0.963                      | 0.997                       |
| slope (k <sub>0</sub> )     | 0.003   | 0.008                      | 0.013                      | 0.013                      | 0.012                      | 0.012                       |
| standard error              | 0.0001  | 0.0006                     | 0.0017                     | 0.0008                     | 0.0010                     | 0.0003                      |
| first order R <sup>2</sup>  | 0.981   | 0.991                      | 0.974                      | 0.992                      | 0.927                      | 0.963                       |
| slope (k <sub>1</sub> )     | 0.002   | 0.007                      | 0.026                      | 0.015                      | 0.016                      | 0.012                       |
| standard error              | 0.0001  | 0.0003                     | 0.0017                     | 0.0006                     | 0.0018                     | 0.0010                      |
| second order $\mathbb{R}^2$ | 0.974   | 0.976                      | 0.583                      | 0.718                      | 0.694                      | 0.829                       |
| slope (k <sub>2</sub> )     | 0.001   | 0.006                      | 0.090                      | 0.028                      | 0.026                      | 0.015                       |
| standard error              | 0.00009 | 0.0003                     | 0.0295                     | 0.0070                     | 0.0067                     | 0.0027                      |

 $(K_0=mg/L min, K_1=min^{-1}, K_2=L/mg min)$ 



Figure S4: Cycling experiment for degrading MO over rGO<sub>1/400</sub>-BiOI



Figure S5: Photocatalytic activities of phenol over BiOI, rGO<sub>1/400</sub>-BiOI and rGO<sub>1/600</sub>-BiOI under visible light irradiation.



Figure S6: XRD patterns of rGO<sub>1/400</sub>-BiOI before and after photoreaction.



Figure S7: Reactive species trapping experiments on the photocatalytic degradation of MO over pure

BiOI.