Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting information

Tripeptide based super-organogelators: structure and function

Debasish Podder,^a Srayoshi Roy Chowdhury,^a Sujay Kumar Nandi^a and Debasish Haldar^{*a}

Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata,

Mohanpur, West Bengal 741246, India.

Fax: +913325873020; Tel: +913325873119;

E-mail: deba_h76@yahoo.com; deba_h76@iiserkol.ac.in

ESI Figure S1	2	Figure S8	17	Figure S27	27
ESI Figure S2	2	Figure S9	18	Figure S28	27
ESI Figure S3	3	Figure S10	18	Figure S29	28
ESI Figure S4	3	Figure S11	19	Figure S30	28
ESI Figure S5	3	Figure S12	19	Figure S31	29
ESI Figure S6	4	Figure S13	20	Figure S32	29
ESI Figure S7	4	Figure S14	20	Figure S33	30
ESI Figure S8	5	Figure S15	21	Figure S34	30
ESI Table 1	5	Figure S16	21	Figure S35	31
ESI Table 2	5	Figure S17	22	Figure S36	31
ESI Table 3	6	Figure S18	22	Figure S37	32
Experimental	6-13	Figure S19	23	Figure S38	32
Figure S1	14	Figure S20	23	Figure S39	33
Figure S2	14	Figure S21	24	Figure S40	33
Figure S3	15	Figure S22	24	Figure S41	34
Figure S4	15	Figure S23	25	Figure S42	34
Figure S5	16	Figure S24	25	Figure S43	35
Figure S6	16	Figure S25	26	Figure S44	35
Figure S7	17	Figure S26	26	Reference	36

Table of Contents

ESI Figure 1: FT-IR spectra of tripeptides **1-4**.

ESI Figure 2: Columnar packing of peptide **2** through intermolecular hydrogen bonding.

ESI Figure 3: The transparent gel of peptide **3** in aromatic solvents.

ESI Figure 4: The transparent gel of peptide **1** in oil.

.

ESI Figure 5: The gelation of (a) peptide **1** (b) peptide **3** in crude oil.

ESI Figure 6: Rheology measurement of the gel from diesel of (a) peptide **1** and (b) peptide **3**. The storage modulus G'' of the gel (1 wt%) was found to be larger than the loss modulus G'' indicates an elastic rather than viscous material.

ESI Figure 7: Optical Microscope images of peptide **1** in (a) Xylene (b) 1,2-Dichlorobenzene (c) Toluene (d) m-xylene (e) p-xylene (f) o-Xylene.

ESI Figure 8: FE-SEM images of the xerogel of peptide 3 from different solvent (a) 1,2-dichlorobenzene (b) *m*-Xylene (c) Toluene (d) Xylene (e) *p*-Xylene (f) *o*-Xylene.

ESI Table 1: Important torsional angles for peptide 2

	Phe	Aib	Phe
¢∕°	-60.91	60.54	-60.43
ψ/°	149.47	30.57	137.26

ESI Table 2:	MGC of	peptide 1 an	d peptide 3 ir	different solvents
--------------	--------	--------------	----------------	--------------------

Solvent/Oil	Peptide 1(in mg/ml)	Peptide 3 (in mg/ml)
Xylene	2.5	2.2
<i>m</i> -Xylene	2.7	2.6
o-Xylene	2.7	2.7
<i>p</i> -Xylene	2.6	2.7
Benzene	3.1	3.0
Toluene	2.8	2.7
1,2-dichlorobenzene	4.5	4.1
Chlorobenzene	6.0	4.8
Petrol	1.6	1.4
Diesel	1.2	1.4
Kerosene	1.7	1.6
Mustard Oil	1.7	1.7
Body Oil	1.9	2.0
Olive Oil	2.1	2.1

Solvent/Oil	Peptide $1(T_{gel} \text{ in } ^{\circ}\mathbf{C})$	Peptide 3 (T _{gel} in °C)
Xylene	48.3	48.2
<i>m</i> -Xylene	51.0	51.4
o-Xylene	49.5	51.5
<i>p</i> -Xylene	49.4	47.9
Benzene	49.0	48.1
Toluene	48.4	47.8
1,2-dichlorobenzene	48.5	48.9
Chlorobenzene	48.4	49.1
Petrol	74.3	74.2
Diesel	74.7	75.8
Kerosene	74.3	73.5
Mustard Oil	73.2	74.3
Body Oil	75.1	75.9
Olive Oil	74.5	75.0

ESI	Table 3:	T_{gel} in	°C of th	e gel of the	peptide 1	and per	otide 3
-----	----------	--------------	----------	--------------	-----------	---------	---------

Experimental

Synthesis of peptide 1:

Boc-Phe-Aib-OMe: This compound is synthesized according to previous report.^{S1}

¹H NMR (500MHz, CDCl₃, δ in ppm): 7.26-7.27 (m, 2H, phenyl ring protons), 7.21-7.22 (m, 2H, phenyl ring protons), 7.22-7.20(m, 1H, phenyl ring proton) 6.48 (s, 1H, Aib NH), 5.22-5.19(s, 1H, Phe NH), 4.22 (m, 1H, Phe C^αH), 3.70 (s, 3H,-OCH3), 2.95-2.90 (m, 2H, Phe C^βH), 1.44 (s, 6H, Aib C^αH), 1.41 (s, 9H, BOC -CH₃). ¹³C NMR (125MHz, CDCl₃, δ in ppm): 174.17, 170.44, 156.31, 136.86, 129.54, 128.26, 126.95, 80.20, 56.43, 56.40, 52.65, 38.54, 28.32, 24.76; Mass spectral data TOF-MS m/z: $[M+Na]^+ = 387$ with an isotope peak at 388, $[M+K]^+ = 403$ with an isotope peak at 404; $[M-Boc+Na]^+ = 287$ with an isotope peak at 288; $[M-Boc+H]^+ = 265$ with an isotope peak at 266; $M_{cal} = 364$;

Boc-Phe-Aib-OH: This compound is synthesized according to previous report.^{S1}

¹H NMR (400 MHz, DMSO-*d*₆, δ in ppm): 12.39-12.16 (b, 1H, Acid OH), 8.05 (s, 1H, Aib NH), 7.26-7.17 (m, 5H, phenyl ring protons), 6.76 (s, 1H, Phe -NH), 4.20 (m, 1H, Phe C^αH), 2.96-2.91 (m, 1H,Phe C^βH), 2.74-2.68 (m, 1H,Phe C^βH), 1.36 (s, 6H, Aib C^βH), 1.29 (s, 9H, BOC -CH3). ¹³C NMR (100MHz, DMSO-*d*₆, δ in ppm): 175.48, 170.88, 155.10, 138.10, 129.31, 127.94, 126.13, 77.98, 55.36, 54.92, 37.19, 28.14, 24.77; Mass spectral data TOF-MS m/z: $[M+H]^+ = 351$, $[M+Na]^+ = 372$ with an isotope peak at 373, $[M-Boc+Na]^+ = 273$ with an isotope peak at 274; $[M-Boc+H]^+ = 251$ with an isotope peak at 252; $M_{cal} = 350$;

Boc-Phe-Aib-Phe-OMe (1). 2.1 g (6 mmol) of Boc-Phe-Aib-OH was dissolved in 25 mL DCM in an ice-water bath. H-Phe-OMe was isolated from 2.15 g (10 mmol) of the corresponding salt of methyl ester hydrochloride by neutralization and subsequent extraction with ethyl acetate and the ethyl acetate extract was concentrated to 10 mL. It was then added to the reaction mixture, followed immediately by 1.85 g (9 mmol) dicyclohexylcarbodiimide (DCC) and 1.21 g (9 mmol) of HOBt. The reaction mixture was allowed to come to room temperature and stirred for 48 h. DCM was evaporated and the residue was dissolved in ethyl acetate (60 mL) and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with 2M HCl (3 x 50 mL), brine (2 x 50 mL), 1M sodium carbonate (3 x50 mL) and brine (2 x50 mL) and dried over anhydrous sodium sulfate. It was evaporated in a vacuum to yield Boc-Phe-Aib-Phe-OMe. Purification was done by silica gel column (60-120 mesh size) with an ethyl acetate and hexane mixture 1: 4 as the eluent. Yield 1.93 g (3.78 mmol, 63%).

¹H NMR (400MHz, CDCl₃, δ in ppm): 7.31-7.25 (t, 4H, phenyl ring protons), 7.26-7.22 (t, 2H, phenyl ring protons), 7.21-7.19 (d, 2H, phenyl ring proton), 7.12-7.10 (d, 2H, phenyl ring proton); 6.85 (s, 1H, NH), 6.17 (s,1H, NH), 5.08 (s, 1H, NH), 4.82-4.78 (q, 1H, Phe C^aH), 4.24-4.18 (q, 1H, Phe C^aH), 3.69 (s, 3H, -OCH3), 3.17-3.10 (m, 1H, Phe C^βH), 3.10-3.02 (q, 2H, Phe C^βH), 3.00-2.94 (q, 1H, Phe C^βH), 1.41 (s, 9H, BOC -CH₃), 1.36 (s, 3H, Aib C^aH), 1.32 (s, 3H, Aib C^aH), ¹³C NMR (100MHz, CDCl₃, δ in ppm): 173.50, 171.88, 170.56, 155.50, 136.72, 135.99, 129.33, 129.26, 128.71, 128.43, 126.98, 80.29, 57.10, 56.32, 53.39, 52.2, 38.17, 37.70, 28.22, 25.18, 24.53. Mass spectral data TOF-MS m/z: [M+Na]⁺ = 534 with an isotope peak at 535, [M+K]⁺ = 550 with an isotope peak at 551;M_{cal} =511;

Synthesis of peptide 2:

Boc-Phe-Ala-OMe: This compound is synthesized according to previous report.^{S2}

¹H NMR (400MHz, CDCl₃, δ in ppm): 7.29-7.26 (m, 2H, phenyl ring protons), 7.23-7.18 (m, 2H, phenyl ring protons), 6.42 (s, 1H, Ala NH), 4.98(s, 1H, Phe NH), 4.53-4.46 (m, 1H, Phe C^αH), 4.38-4.31 (m, 1H, Ala C^αH), 3.69 (s, 3H,-OCH3), 3.09-3.00 (m, 2H, Phe C^βH), 1.39 (s, 9H, BOC -CH₃), 1.33-1.31 (d, J=6.81, 3H, Ala -CH₃). ¹³C NMR (100MHz, CDCl₃, δ in ppm): 173.05, 170.93, 154.92, 136.72, 129.59, 128.86, 127.18, 79.16, 55.87, 52.63, 48.32, 38.55, 28.46, 18.58;

Mass spectral data TOF-MS m/z: $[M+Na]^+ = 372$ with an isotope peak at 373, $[M+K]^+ = 388$ with an isotope peak at 389, $[M-Boc+Na]^+ = 273$ with an isotope peak at 274; $[M-Boc+H]^+ = 251$; $M_{cal} = 350$;

Boc-Phe-Ala-OH. To 2.80 g (8 mmol) of Boc-Phe-Ala-OMe, 25 mL MeOH and 2(M) 15 mL NaOH were added and the progress of saponification was monitored by thin layer chromatography (TLC). The reaction mixture was stirred. After10 h, methanol was removed under vacuum; the residue was dissolved in 50 mL of water and washed with diethyl ether (2 X 50mL). Then the pH of the aqueous layer was adjusted to 2 using 1M HCl and it was extracted with ethyl acetate (3 X 50 mL). The extracts were pooled, dried over anhydrous sodium sulfate, and evaporated under vacuum to obtained compound as a waxy solid. Yield: 2.46 g (7.30 mmol, 91.20%).

¹H NMR (400 MHz, DMSO-*d*₆, *δ* in ppm): 12.66-12.50 (br, 1H, Acid OH), 8.23 (s, 1H, Ala-NH), 7.31-7.27 (m, 3H, phenyl ring protons), 7.23-7.20 (m, 2H, phenyl ring protons), 6.88 (s, 1H, Phe-NH), 4.26-4.4.22 (m, 2H, Phe C^αH and Ala C^αH), 3.02-2.98 (m, 1H,Phe C^βH), 2.75-2.69 (m, 1H,Phe C^βH), 1.31 (s, 9H, BOC -CH3), 1.24 (s, 3H, Ala CH₃). ¹³C NMR (100MHz, DMS0-*d*₆, *δ* in ppm): 174.14, 171.66, 155.29, 138.29, 129.28, 128.02, 126.18, 78.00, 55.52, 47.54, 37.44, 28.17, 17.28;

Boc-Phe-Ala-Phe-OMe (2). 2.01 g (6 mmol) of Boc-Phe-Ala-OH was dissolved in 25 mL DCM in an ice-water bath. H-Phe-OMe was isolated from 2.15 g (10 mmol) of the corresponding salt of methyl ester hydrochloride by neutralization and subsequent extraction with ethyl acetate and the ethyl acetate extract was concentrated to 10 mL. It was then added to the reaction mixture, followed immediately by 1.85 g (9 mmol) dicyclohexylcarbodiimide (DCC) and 1.21 g (9 mmol) of HOBt. The reaction mixture was allowed to come to room temperature and stirred for 48 h. DCM was evaporated and the residue was dissolved in ethyl acetate (60 mL) and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with 2M HCl (3 x 50 mL), brine (2 x 50 mL), 1M sodium carbonate (3 x50 mL) and brine (2 x50 mL) and dried over anhydrous sodium sulfate. It was evaporated in a vacuum to yield Boc-Phe-Ala-Phe- OMe. Purification was done by silica gel column (60-120 mesh size) with an ethyl acetate and hexane mixture 1: 4 as the eluent. Yield 1.88 g (3.8 mmol, 63%).

¹H NMR (400MHz, CDCl₃, δ in ppm): 7.28-7.24 (t, 4H, phenyl ring protons), 7.22-7.18 (t, 2H, phenyl ring protons), 7.16-7.12 (d, 2H, phenyl ring proton), 7.10-7.07 (d, 2H, phenyl ring proton), 6.84-6.80 (d, 1H, NH), 6.7(s,1H, NH), 5.16-5.12 (s, 1H, NH), 4.81-4.75 (q, 1H, Phe C^{\alpha}H), 4.5-4.42(q, 1H, Phe C^{\alpha}H), 4.4-4.3 (m,1H, Ala C^{\alpha}H), 3.67 (s, 3H,-OCH3), 3.08-3.03 (m, 2H, Phe C^{\beta}H), 3.04-2.94 (m, 2H, Phe C^{\beta}H), 1.38 (s, 9H, BOC -CH₃), 1.26-1.24 (d,3H, Ala CH₃). ¹³C NMR (100MHz, CDCl₃, δ in ppm): 171.65, 171.45, 171.08, 155.40, 136.48, 135.75, 129.31, 129.15, 128.52, 127.07, 126.83, 80.09, 55.42, 53.39, 52.24, 48.74, 38.17, 37.77, 28.17, 18.28. Mass spectral data TOF-MS m/z: [M+Na]⁺ = 520 with an isotope peak at 521, [M+K]⁺ = 536, M_{cal} =497.

Synthesis of peptide 3:

Boc-Phe-PG-OMe: 2.65 g (10 mmol) of Boc-Phe-OH was dissolved in 25 mL DCM in an icewater bath. H-PG-OMe was isolated from 3.01 g (15 mmol) of the corresponding methyl ester hydrochloride by neutralization and subsequent extraction with ethyl acetate and the ethyl acetate extract was concentrated to 10 mL. It was then added to the reaction mixture, followed immediately by 2.47 g (12 mmol) N, N'-dicyclohexylcarbodiimide (DCC) and 1.62 g (12 mmol) of HOBt. The reaction mixture was allowed to come to room temperature and stirred for 48 h. DCM was evaporated and the residue was dissolved in ethyl acetate (60 mL) and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with 2M HCl (3 X 50 mL), brine (2x50 mL), 1M sodium carbonate (3 X 50 mL) and brine (2 X 50 mL) and dried over anhydrous sodium sulfate. It was evaporated in a vacuum to yield Boc-Phe-PG-OMe as a white solid.

¹H NMR (400MHz, CDCl₃, δ in ppm): 7.30-7.26 (t, 4H, phenyl ring protons), 7.26-7.24 (t, 2H, phenyl ring protons), 7.23-7.21 (d, 2H, phenyl ring proton), 7.16-7.12 (d, 2H, phenyl ring proton), 7.01 (s, 1H, NH proton), 5.49-5.47 (s, 1H, NH proton), 5.05 (m, 1H, Phe C^{\alpha}H), 4.43 (b, 1H, Phe C^{\alpha}H), 3.65 (s, 3H,-OCH3), 3.08-3.00 (m, 2H, Phe C^{\beta}H), 1.37 (s, 9H, BOC -CH₃). ¹³C NMR (100MHz, CDCl₃, δ in ppm):170.65, 170.60, 155.29, 136.39, 136.10, 129.30, 128.80, 128.41, 127.14, 126.81, 80.16, 56.38, 55.40, 52.68, 28.15 ; Mass spectral data TOF-MS m/z: [M+Na]⁺ = 435 with an isotope peak at 436, [M-Boc+Na]⁺ = 335 with an isotope peak at 336; [M-Boc+H]⁺ = 313 ;[2M+Na]⁺ = 847 with an isotope peak at 848. M_{cal} =412;

Boc-Phe-PG-OH. To 2.88 g (7mmol) of Boc-Phe-PG-OMe, 25 mL MeOH and 2(M) 15 mL NaOH were added and the progress of saponification was monitored by thin layer chromatography (TLC). The reaction mixture was stirred. After10 h, methanol was removed under vacuum; the

residue was dissolved in 50 mL of water and washed with diethyl ether (2 X 50mL). Then the pH of the aqueous layer was adjusted to 2 using 1M HCl and it was extracted with ethyl acetate (3 X 50 mL). The extracts were pooled, dried over anhydrous sodium sulfate, and evaporated under vacuum to obtained compound as a waxy solid.

¹H NMR (400MHz, CDCl₃, δ in ppm): 12.9(b,1H–COOH proton): 8.66-8.56 (d, 1H, NH proton), 7.46-7.42 (d, 1H, phenyl ring protons), 7.42-7.38 (d, 1H, phenyl ring protons), 7.38-7.35 (d, 2H, phenyl ring proton), 7.35-7.30 (m, 2H, phenyl ring proton), 7.29-7.27 (d, 1H, phenyl ring proton) ,7.27-7.23 (d, 2H, phenyl ring proton), 7.21-7.15 (m, 1H, phenyl ring proton), 7.01-6.93 (d, 1H, NH proton), 5.39-5.34 (t, 1H, Phe C^{\alpha}H), 4.38-4.28 (m, 1H, Phe C^{\alpha}H), 3.05-2.9 (m, 1H, Phe C^{\beta}H), 2.78-2.64 (m, 1H, Phe C^{\beta}H), 1.3 (s, 9H, BOC -CH₃).¹³C NMR (100MHz, CDCl₃, δ in ppm):171.80 171.60, 155.22, 138.17, 137.05, 129.26, 128.53, 127.99, 127.56,127.26, 126.19, 78.08, 56.24, 55.47, 28.13 ; Mass spectral data TOF-MS m/z: [M+Na]⁺ = 421 with an isotope peak at 422,; [M-Boc+Na]⁺ = 321 with an isotope peak at 322; [M-Boc+H]⁺ = 299; M_{cal} =398;

Boc-Phe-PG-Phe-OMe (3). 2.388 g (6 mmol) of Boc-Phe-PG-OH was dissolved in 25 mL DCM in an ice-water bath. H-Phe-OMe was isolated from 2.15 g (10 mmol) of the corresponding salt of methyl ester hydrochloride by neutralization and subsequent extraction with ethyl acetate and the ethyl acetate extract was concentrated to 10 mL. It was then added to the reaction mixture, followed immediately by 1.85 g (9 mmol) dicyclohexylcarbodiimide (DCC) and 1.21 g (9 mmol) of HOBt. The reaction mixture was allowed to come to room temperature and stirred for 48 h. DCM was evaporated and the residue was dissolved in ethyl acetate (60 mL) and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with 2M HCl (3 x 50 mL), brine (2 x 50 mL), 1M sodium carbonate (3 x50 mL) and brine (2 x50 mL) and dried over anhydrous sodium sulfate. It was evaporated in a vacuum to yield Boc-Phe(1)-PG(2)-Phe(3)- OMe. Purification was done by silica gel column (60-120 mesh size) with an ethyl acetate and hexane mixture 1: 3 as the eluent.

¹H NMR (400MHz, CDCl₃, δ in ppm): 7.34-7.27 (5H, phenyl ring protons), 7.25-7.17 (5H, phenyl ring protons), 7.16-7.08 (4H, phenyl ring proton), 7.05-7.03 (d, 2H, NH), 7.02-7.00 (2H, phenyl ring protons), 6.63-6.61 (d, 1H, NH), 6.05 (s, 1H, PG C^αH)5.32-5.28 (m, 1H, Phe C^αH), 4.79-4.73 (m, 1H, Phe C^αH), 3.63 (s, 3H,-OCH3), 3.17-3.13 (m, 1H, Phe C^βH), 3.08-3.02 (m, 2H, Phe C^βH), 2.98-2.94 (m, 1H, Phe C^βH), 1.39 (s, 9H, BOC -CH₃), ¹³C NMR (100MHz, CDCl₃, δ in

ppm): 171.84, 171.78, 171.33, 155.85, 136.94, 136.13, 129.78, 129.65, 129.53, 129.23, 128.99, 128.76, 128.59, 127.76, 127.61, 127.53, 127.28, 127.25, 127.12, 80.49, 57.36, 57.01, 54.09, 53.60, 38.05, 38.16, 28.66. Mass spectral data TOF-MS m/z: $[M+Na]^+ = 582$ with an isotope peak at 583, $[M+K]^+ = 598$ with an isotope peak at 599; $[M+Na]^+ = 1141$ with an isotopic peak at 1142; $M_{cal} = 559$.

Synthesis of peptide 4:

Boc-Phe-AC-OMe: 2.65 g (10 mmol) of Boc-Phe-OH was dissolved in 25 mL DCM in an icewater bath. H-AC-OMe was isolated from 2.89 g (15 mmol) of the corresponding methyl ester hydrochloride by neutralization and subsequent extraction with ethyl acetate and the ethyl acetate extract was concentrated to 10 mL. It was then added to the reaction mixture, followed immediately by 2.47 g (12 mmol) N,N'-dicyclohexylcarbodiimide (DCC) and 1.62 g (12 mmol) of HOBt. The reaction mixture was allowed to come to room temperature and stirred for 48 h. DCM was evaporated and the residue was dissolved in ethyl acetate (60 mL) and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with 2M HCl (3 X 50 mL), brine (2x50 mL), 1M sodium carbonate (3 X 50 mL) and brine (2 X 50 mL) and dried over anhydrous sodium sulfate. It was evaporated in a vacuum to yield Boc-Phe-AC-OMe as a white solid. Yield: 2.55 g (6.3 mmol, 63%).

¹H NMR (400MHz, CDCl₃, δ in ppm): 7.3-7.22 (m, 5H, phenyl ring protons), 6.3 (s, 1H, NH proton), 5.2-5.16 (d, 1H, NH proton), 4.40-4.30 (m, 1H, Phe C^aH), 3.67 (s, 3H, -OCH3), 3.08-3.02 (m, 2H, Phe C^βH), 1.94-1.88 (m,2H,cyclohexane ring), 1.79-1.71 (m, 2H, cyclohexane ring), 1.58-1.48 (m, 4H, cyclohexane ring), 1.41 (s, 9H, BOC -CH₃), 1.24-1.18 (m, 2H, cyclohexane ring). ¹³C NMR (100MHz, CDCl₃, δ in ppm): 174.20, 170.46, 156, 136.86, 129.35, 128.55, 126.80, 80.20, 58.69, 55.50, 52.16, 37.61, 32.20, 31.93, 29.62, 28.18, 24.91, 21.14, 21.03. Mass spectral data TOF-MS m/z: [M+Na]⁺ = 427 with an isotope peak at 428, [M-Boc+Na]⁺ = 327 with an isotope peak at 305; [M-Boc+H]⁺ = 251; M_{cal} =404;

Boc-Phe-Ac-OH. To 2.43 g (6 mmol) of Boc-Phe-AC-OMe, 25 mL MeOH and 2(M) 10 mL NaOH were added and the progress of saponification was monitored by thin layer chromatography (TLC). The reaction mixture was stirred. After10 h, methanol was removed under vacuum; the residue was dissolved in 50 mL of water and washed with diethyl ether (2 X 50mL). Then the pH of the aqueous layer was adjusted to 2 using 1M HCl and it was extracted with ethyl acetate (3 X

50 mL). The extracts were pooled, dried over anhydrous sodium sulfate, and evaporated under vacuum to obtained compound as a waxy solid.

¹H NMR (400MHz, DMSO-*d*₆, δ in ppm): 12.4-11.6 (b, 1H, COOH Proton), 7.78 (s, 1H, NH proton), 7.39-7.28 (m, 4H, phenyl ring protons), 7.20-7.14 (t, 1H, phenyl ring protons), 6.86-6.82 (d, 1H, NH proton), 4.25-4.19 (m, 1H, Phe C^{\alpha}H), 2.96-2.90 (m, 1H, Phe C^{\beta}H), 2.76-2.70 (m, 1H, Phe C^{\beta}H), 1.68-1.58 (m,2H,cyclohexane ring), 1.52-1.4 (m, 4H, cyclohexane ring), 1.28 (s, 9H, BOC -CH₃), 1.24-1.21 (m, 4H, cyclohexane ring). ¹³C NMR (100MHz DMSO-*d*₆, δ in ppm): 175.39, 171.29, 155.11, 138.15, 129.23, 127.95, 126.11, 77.94, 57.63, 55.53, 37.39, 31.75, 31.30, 28.08, 27.82, 24.94, 20.89. Mass spectral data TOF-MS m/z: [M+Na]⁺ = 413 with an isotope peak at 414, [M-Boc+Na]⁺ = 313 with an isotope peak at 314; [M-Boc+H]⁺ = 291; M_{cal} =390;

Boc-Phe-AC-Phe-OMe (4). 2.01 g (6 mmol) of Boc-Phe-Ala-OH was dissolved in 25 mL DCM in an ice-water bath. H-Phe-OMe was isolated from 2.15 g (10 mmol) of the corresponding salt of methyl ester hydrochloride by neutralization and subsequent extraction with ethyl acetate and the ethyl acetate extract was concentrated to 10 mL. It was then added to the reaction mixture, followed immediately by 1.85 g (9 mmol) dicyclohexylcarbodiimide (DCC) and 1.21 g (9 mmol) of HOBt. The reaction mixture was allowed to come to room temperature and stirred for 48 h. DCM was evaporated and the residue was dissolved in ethyl acetate (60 mL) and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with 2M HCl (3 x 50 mL), brine (2 x 50 mL), 1M sodium carbonate (3 x50 mL) and brine (2 x50 mL) and dried over anhydrous sodium sulfate. It was evaporated in a vacuum to yield Boc-Phe-AC-Phe-OMe. Purification was done by silica gel column (60-120 mesh size) with an ethyl acetate and hexane mixture 1: 5 as the eluent. Yield 1.82 g (3.3mmol, 55%).

¹H NMR (400MHz, CDCl₃, δ in ppm): 7.29-7.25 (t, 4H, phenyl ring protons), 7.22-7.18 (t, 4H, phenyl ring protons), 7.15-7.11 (d, 2H, phenyl ring proton), 6.93 (s, 1H, NH), 4.96 (s,1H, NH), 4.81-4.75 (q, 1H, Phe C^αH), 4.28-4.22 (q, 1H, Phe C^αH), 3.67 (s, 3H,-OCH₃), 3.18-3.10 (m, 1H, Phe C^βH), 3.08-3.00 (m, 3H, Phe C^βH), 1.58 (s, 4H, cyclohexane ring), 1.39 (s, 9H, BOC -CH₃), 1.23(s,6H, cyclohexane ring). ¹³C NMR (100MHz, CDCl₃, δ in ppm): 174.15, 172.52, 171.69. 156.11, 137.30, 136.72, 129.8, 129.25, 128.84, 127.43, 127.32, 80.91, 60.61, 56.65, 53.92, 52.57, 38.29, 32.30, 32.20, 30.11, 28.65, 25.38, 21.50, 21.44 .Mass spectral data TOF-MS m/z: [M+Na]⁺ = 574 with an isotope peak at 575, M_{cal} =551

Synthesis of Peptide 5-7:

We have synthesized peptide 5, peptide 6 and peptide 7 by following the above procedure and characterized by ¹H NMR, ¹³C NMR spectroscopy and Mass spectrometry.

Boc-Leu-Ala-Leu-OMe (5):

¹H NMR (400MHz, CDCl₃, δ in ppm): 7.14-7.10 (1H, d, NH Proton); 7.09-7.04 (1H, d, NH Proton); 5.25-5.20 (1H, d, NH Proton); 4.59-4.48 (2H, m, Leu C^αH); 4.17-4.11 (1H, m, Ala C^αH); 3.67 (3H, S, OMe); 1.61-1.56 (2H, m, Leu C^βH); 1.55-1.50 (2H, m, Leu C^βH); 1.48-1.43 (2H, m, Leu C^γH); 1.38 (9H, s, Boc CH₃); 1.31-1.29 (3H, d, Ala CH₃); 0.94-0.90 (12H, m, Leu CH₃). ¹³C NMR (100MHz, CDCl₃, δ in ppm): 173.57, 173.17, 172.45, 156.13, 80.32, 53.39, 52.64, 51.17, 49.02, 41.94, 41.50, 28.69, 25.12, 23.39, 23.17, 22.19, 18.43

Boc-Val-Ala-Val-OMe (6):

¹H NMR (400MHz, CDCl₃, δ in ppm): 7.24-7.20 (1H, d, NH Proton); 7.15-7.11 (1H, d, NH Proton); 5.45-5.41 (1H, d, NH Proton); 4.66-4.62 (1H, m, Ala C^αH); 4.47-4.43 (1H, m, Val C^αH); 4.02-3.96 43 (1H, m, Val C^αH); 3.67 (3H, S, OMe); 2.13-2.01 (2H, m, Val C^βH); 1.37 (9H, s, Boc CH₃); 1.32-1.28 (3H, d, Ala CH₃); 0.9-0.88 (12H, m, Val CH₃). ¹³C NMR (100MHz, CDCl₃, δ in ppm): 172.74, 172.60, 172.17, 156.33, 80.01, 60.06, 57.73, 52.46, 49.15, 31.57, 31.42, 28.66, 19.66, 19.30, 18.70, 18.18.

Boc-Ala-Ala-OMe (7):

¹H NMR (400MHz, CDCl₃, δ in ppm): 6.90-6.84 (1H, d, NH Proton); 6.84-6.78 (1H,d, NH proton); 5.12-5.06 (1H, d, NH Proton); 4.57-4.47 (2H, m, Ala C^{\alpha}H); 4.21-4.11 (1H, m, Ala C^{\alpha}H); 3.73 (3H, S, OMe); 1.43 (9H, s, Boc CH₃); 1.41-1.38 (3H, d, Ala CH₃); 1.37-1.34 (6H, d, Ala CH₃). ¹³C NMR (100MHz, CDCl₃, δ in ppm): 173.58, 173.13, 172.17, 156, 80.68, 52.91, 50.5, 49.22, 48.57, 28.75, 18.90, 18.74, 18.51

Figure S1: ¹H NMR (500 MHz, CDCl₃) spectrum of Boc-Phe-Aib-OMe.

Figure S2: ¹³C NMR (125 MHz, CDCl₃) spectrum of Boc-Phe-Aib-OMe.

Figure S3: Mass spectrum of Boc-Phe-Aib-OMe

Figure S4: ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of Boc-Phe-Aib-OH.

Figure S5: ¹³C NMR (100MHz, DMSO-*d*₆) spectrum of Boc-Phe-Aib-OH.

Figure S6: Mass spectrum of Boc-Phe-Aib-OH.

Figure S7: ¹H NMR (400 MHz, CDCl₃) spectrum of Boc-Phe-Aib-Phe-OMe.

Figure S8: ¹³C NMR (100 MHz, CDCl₃) spectrum of Boc-Phe-Aib-Phe-OMe.

Figure S9: Mass spectrum of Boc-Phe-Aib-Phe-OMe.

Figure S10: ¹H NMR (400 MHz, CDCl₃) spectrum of Boc-Phe-Ala-OMe.

Figure S11: ¹³C NMR (100 MHz, CDCl₃) spectrum of Boc-Phe-Ala-OMe.

Figure S12: Mass spectrum of Boc-Phe-Ala-OMe.

Figure S13: ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of Boc-Phe-Ala-OH.

Figure S14: ¹³C NMR (100MHz, DMSO-*d*₆) spectrum of Boc-Phe-Ala-OH.

Figure S15: ¹H NMR (400MHz, CDCl₃) spectrum of Boc-Phe-Ala-Phe-OMe.

Figure S16: ¹³C NMR (100MHz, CDCl₃) spectrum of Boc-Phe-Ala-Phe-OMe.

Figure S17: Mass Spectrum of Boc-Phe-Ala-Phe-OMe.

Figure S18: ¹H NMR (400MHz, CDCl₃) spectrum of Boc-Phe-PG-OMe.

Figure S19: ¹³C NMR (100MHz, CDCl₃) spectrum of Boc-Phe-PG-OMe.

Figure S20: Mass spectrum of Boc-Phe-PG-OMe.

Figure S21: ¹H NMR (400MHz, DMSO-*d*₆) spectrum of Boc-Phe-PG-OH.

Figure S22: ¹³C NMR (100MHz, DMSO-*d*₆) spectrum of Boc-Phe-PG-OH.

Figure S23: Mass Spectrum of Boc-Phe-PG-OH.

Figure S24: ¹H NMR (400MHz, CDCl₃) spectrum of Boc-Phe-PG-Phe-OMe.

Figure S25: ¹³C NMR (100MHz, CDCl₃) spectrum of Boc-Phe-PG-Phe-OMe.

Figure S26: Mass spectrum of Boc-Phe-PG-Phe-OMe.

Figure S27: ¹H NMR (400MHz, CDCl₃) spectrum of Boc-Phe-AC-OMe.

Figure S28: ¹³C NMR (100MHz, CDCl₃) spectrum of Boc-Phe-AC-OMe.

Figure S29: Mass spectrum of Boc-Phe-AC-OMe

Figure S30: ¹H NMR (400MHz, DMSO-*d*₆) spectrum of Boc-Phe-AC-OH.

Figure S31: ¹³C NMR (100MHz, DMSO-*d*₆) spectrum of Boc-Phe-AC-OH.

Figure S32: Mass spectrum of Boc-Phe-AC-OH

Figure S33: ¹H NMR (400MHz, CDCl₃) spectrum of Boc-Phe-AC-Phe-OMe.

Figure S34: ¹³C NMR (100MHz, CDCl₃) spectrum of Boc-Phe-AC-Phe-OMe.

Figure S35: Mass spectrum of Boc-Phe-AC-Phe-OMe.

Figure S36: ¹H NMR (400MHz, CDCl₃) spectrum of Boc-Leu-Ala- Leu-OMe.

Figure S37: ¹³C NMR (100MHz, CDCl₃) spectrum of Boc-Leu-Ala- Leu-OMe.

Figure S38: Mass spectrum of Boc-Leu-Ala- Leu-OMe.

Figure S39: ¹H NMR (400MHz, CDCl₃) spectrum of Boc-Val-Ala- Val-OMe.

Figure S40: ¹³C NMR (100MHz, CDCl₃) spectrum of Boc-Val-Ala-Val-OMe.

Figure S41: Mass spectrum of Boc-Val-Ala- Val-OMe.

Figure S42: ¹H NMR (400MHz, CDCl₃) spectrum of Boc-Ala-Ala- Ala-OMe.

Figure S43: ¹³C NMR (100MHz, CDCl₃) spectrum of Boc-Ala-Ala- Ala-OMe.

Figure S44: Mass spectrum of Boc-Ala-Ala-Ala-OMe.

Reference:

S1. A. Dutt, R. Frohlich and A. Pramanik, Org. Biomol. Chem., 2005, 3, 661–665.

S2. T. Pospišil, L. F. Hamzić, L. B. Ahmed, M. Lovrić, S. Gajović and L. Frkanec, *Biomater. Sci.*, 2016, 4, 1412-1416.