Supporting information

Tripeptide based super-organogelators: structure and function

Debasish Podder, ${ }^{\text {a }}$ Srayoshi Roy Chowdhury, ${ }^{\text {a }}$ Sujay Kumar Nandi ${ }^{a}$ and Debasish Haldar*a Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.

Fax: +913325873020; Tel: +913325873119;
E-mail: deba_h76@yahoo.com; deba_h76@iiserkol.ac.in
Table of Contents

ESI Figure S1	$\mathbf{2}$	Figure S8	$\mathbf{1 7}$	Figure S27	$\mathbf{2 7}$
ESI Figure S2	$\mathbf{2}$	Figure S9	$\mathbf{1 8}$	Figure S28	$\mathbf{2 7}$
ESI Figure S3	$\mathbf{3}$	Figure S10	$\mathbf{1 8}$	Figure S29	$\mathbf{2 8}$
ESI Figure S4	$\mathbf{3}$	Figure S11	$\mathbf{1 9}$	Figure S30	$\mathbf{2 8}$
ESI Figure S5	$\mathbf{3}$	Figure S12	$\mathbf{1 9}$	Figure S31	$\mathbf{2 9}$
ESI Figure S6	$\mathbf{4}$	Figure S13	$\mathbf{2 0}$	Figure S32	$\mathbf{2 9}$
ESI Figure S7	$\mathbf{4}$	Figure S14	$\mathbf{2 0}$	Figure S33	$\mathbf{3 0}$
ESI Figure S8	$\mathbf{5}$	Figure S15	$\mathbf{2 1}$	Figure S34	$\mathbf{3 0}$
ESI Table 1	$\mathbf{5}$	Figure S16	$\mathbf{2 1}$	Figure S35	$\mathbf{3 1}$
ESI Table 2	$\mathbf{5}$	Figure S17	$\mathbf{2 2}$	Figure S36	$\mathbf{3 1}$
ESI Table 3	$\mathbf{6}$	Figure S18	$\mathbf{2 2}$	Figure S37	$\mathbf{3 2}$
Experimental	$\mathbf{6 - 1 3}$	Figure S19	$\mathbf{2 3}$	Figure S38	$\mathbf{3 2}$
Figure S1	$\mathbf{1 4}$	Figure S20	$\mathbf{2 3}$	Figure S39	$\mathbf{3 3}$
Figure S2	$\mathbf{1 4}$	Figure S21	$\mathbf{2 4}$	Figure S40	$\mathbf{3 3}$
Figure S3	$\mathbf{1 5}$	Figure S22	$\mathbf{2 4}$	Figure S41	$\mathbf{3 4}$
Figure S4	$\mathbf{1 5}$	Figure S23	$\mathbf{2 5}$	Figure S42	$\mathbf{3 4}$
Figure S5	$\mathbf{1 6}$	Figure S24	$\mathbf{2 5}$	Figure S43	$\mathbf{3 5}$
Figure S6	$\mathbf{1 6}$	Figure S25	$\mathbf{2 6}$	Figure S44	$\mathbf{3 5}$
Figure S7	$\mathbf{1 7}$	Figure S26	$\mathbf{2 6}$	Reference	$\mathbf{3 6}$

ESI Figure 1: FT-IR spectra of tripeptides 1-4.

ESI Figure 2: Columnar packing of peptide 2 through intermolecular hydrogen bonding.

ESI Figure 3: The transparent gel of peptide $\mathbf{3}$ in aromatic solvents.

ESI Figure 4: The transparent gel of peptide $\mathbf{1}$ in oil.

ESI Figure 5: The gelation of (a) peptide $\mathbf{1}$ (b) peptide $\mathbf{3}$ in crude oil.

ESI Figure 6: Rheology measurement of the gel from diesel of (a) peptide $\mathbf{1}$ and (b) peptide 3. The storage modulus $\mathrm{G}^{\prime \prime}$ of the gel ($1 \mathrm{wt} \%$) was found to be larger than the loss modulus G " indicates an elastic rather than viscous material.

ESI Figure 7: Optical Microscope images of peptide 1 in (a) Xylene (b) 1,2-Dichlorobenzene (c) Toluene (d) m-xylene (e) p-xylene (f) o-Xylene.

ESI Figure 8: FE-SEM images of the xerogel of peptide 3 from different solvent (a) 1,2dichlorobenzene (b) m-Xylene (c) Toluene (d) Xylene (e) p-Xylene (f) o-Xylene.

ESI Table 1: Important torsional angles for peptide 2

	Phe	Aib	Phe
$\phi /{ }^{\circ}$	-60.91	60.54	-60.43
$\psi /{ }^{\circ}$	149.47	30.57	137.26

ESI Table 2: MGC of peptide $\mathbf{1}$ and peptide $\mathbf{3}$ in different solvents

Solvent/Oil	Peptide 1(in mg/ml)	Peptide 3 $(\mathrm{in} \mathrm{mg} / \mathrm{ml})$
Xylene	2.5	2.2
m-Xylene	2.7	2.6
o-Xylene	2.7	2.7
p-Xylene	2.6	2.7
Benzene	3.1	3.0
Toluene	2.8	2.7
1,2-dichlorobenzene	4.5	4.1
Chlorobenzene	6.0	4.8
Petrol	1.6	1.4
Diesel	1.2	1.4
Kerosene	1.7	1.6
Mustard Oil	1.7	1.7
Body Oil	1.9	2.0
Olive Oil	2.1	2.1

ESI Table 3: $\mathrm{T}_{\text {gel }}$ in ${ }^{\circ} \mathrm{C}$ of the gel of the peptide 1 and peptide 3

Solvent/Oil	Peptide $\mathbf{1}\left(\mathrm{T}_{\text {gel }}\right.$ in $\left.{ }^{\circ} \mathrm{C}\right)$	Peptide $\mathbf{3}\left(\mathrm{T}_{\text {gel }}\right.$ in $\left.{ }^{\circ} \mathrm{C}\right)$
Xylene	48.3	48.2
m-Xylene	51.0	51.4
o-Xylene	49.5	51.5
p-Xylene	49.4	47.9
Benzene	49.0	48.1
Toluene	48.4	47.8
1,2-dichlorobenzene	48.5	48.9
Chlorobenzene	48.4	49.1
Petrol	74.3	74.2
Diesel	74.7	75.8
Kerosene	74.3	73.5
Mustard Oil	73.2	74.3
Body Oil	75.1	75.9
Olive Oil	74.5	75.0

Experimental

Synthesis of peptide 1:

Boc-Phe-Aib-OMe: This compound is synthesized according to previous report. ${ }^{S 1}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): 7.26-7.27 ($\mathrm{m}, 2 \mathrm{H}$, phenyl ring protons), 7.21-7.22 (m, 2 H , phenyl ring protons), $7.22-7.20(\mathrm{~m}, 1 \mathrm{H}$, phenyl ring proton) $6.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Aib} \mathrm{NH}), 5.22-5.19(\mathrm{~s}, 1 \mathrm{H}$, Phe NH), 4.22 (m, 1H, Phe C ${ }^{\alpha} \mathrm{H}$), 3.70 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH} 3$), 2.95-2.90 (m, 2H, Phe C ${ }^{\beta} \mathrm{H}$), 1.44 ($\mathrm{s}, 6 \mathrm{H}$, Aib $\mathrm{C}^{\alpha} \mathrm{H}$), 1.41 (s, 9H, BOC $-\mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): 174.17, 170.44, $156.31,136.86,129.54,128.26,126.95,80.20,56.43,56.40,52.65,38.54,28.32,24.76$; Mass spectral data TOF-MS m/z: $[\mathrm{M}+\mathrm{Na}]^{+}=387$ with an isotope peak at $388,[\mathrm{M}+\mathrm{K}]^{+}=403$ with an isotope peak at 404; $[\mathrm{M}-\mathrm{Boc}+\mathrm{Na}]^{+}=287$ with an isotope peak at $288 ;[\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+}=265$ with an isotope peak at 266 ; $\mathrm{M}_{\mathrm{cal}}=364$;

Boc-Phe-Aib-OH: This compound is synthesized according to previous report. ${ }^{\text {S1 }}$
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}, δ in ppm): 12.39-12.16 (b, 1H, Acid OH), $8.05(\mathrm{~s}, 1 \mathrm{H}$, Aib NH), 7.26-7.17 (m, 5H, phenyl ring protons), $6.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Phe}-\mathrm{NH}), 4.20\left(\mathrm{~m}, 1 \mathrm{H}\right.$, Phe $\left.\mathrm{C}^{\alpha} \mathrm{H}\right), 2.96-2.91$ $\left(\mathrm{m}, 1 \mathrm{H}\right.$, Phe $\left.\mathrm{C}^{\beta} \mathrm{H}\right), 2.74-2.68\left(\mathrm{~m}, 1 \mathrm{H}\right.$, Phe $\left.\mathrm{C}^{\beta} \mathrm{H}\right), 1.36\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Aib} \mathrm{C}^{\beta} \mathrm{H}\right), 1.29(\mathrm{~s}, 9 \mathrm{H}$, BOC $-\mathrm{CH} 3)$. ${ }^{13} \mathrm{C}$ NMR (100MHz, DMSO- d_{6}, δ in ppm): 175.48, 170.88, 155.10, 138.10, 129.31, 127.94, $126.13,77.98,55.36,54.92,37.19,28.14,24.77$; Mass spectral data TOF-MS m/z: $[\mathrm{M}+\mathrm{H}]^{+}=351$,
$[\mathrm{M}+\mathrm{Na}]^{+}=372$ with an isotope peak at $373,[\mathrm{M}-\mathrm{Boc}+\mathrm{Na}]^{+}=273$ with an isotope peak at 274 ; $[\mathrm{M}-$ $\mathrm{Boc}+\mathrm{H}]^{+}=251$ with an isotope peak at $252 ; \mathrm{M}_{\text {cal }}=350$;

Boc-Phe-Aib-Phe-OMe (1). 2.1 g (6 mmol) of Boc-Phe-Aib-OH was dissolved in 25 mL DCM in an ice-water bath. H-Phe-OMe was isolated from $2.15 \mathrm{~g}(10 \mathrm{mmol})$ of the corresponding salt of methyl ester hydrochloride by neutralization and subsequent extraction with ethyl acetate and the ethyl acetate extract was concentrated to 10 mL . It was then added to the reaction mixture, followed immediately by $1.85 \mathrm{~g}(9 \mathrm{mmol})$ dicyclohexylcarbodiimide (DCC) and $1.21 \mathrm{~g}(9 \mathrm{mmol})$ of HOBt. The reaction mixture was allowed to come to room temperature and stirred for 48 h . DCM was evaporated and the residue was dissolved in ethyl acetate (60 mL) and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with $2 \mathrm{M} \mathrm{HCl}(3 \times 50 \mathrm{~mL})$, brine ($2 \times 50 \mathrm{~mL}$), 1M sodium carbonate ($3 \times 50 \mathrm{~mL}$) and brine ($2 \times 50 \mathrm{~mL}$) and dried over anhydrous sodium sulfate. It was evaporated in a vacuum to yield Boc-Phe-Aib-Phe-OMe. Purification was done by silica gel column (60-120 mesh size) with an ethyl acetate and hexane mixture 1:4 as the eluent. Yield 1.93 g ($3.78 \mathrm{mmol}, 63 \%$).
${ }^{1} \mathrm{H}$ NMR (400MHz, $\mathrm{CDCl}_{3}, \delta$ in ppm): 7.31-7.25 ($\mathrm{t}, 4 \mathrm{H}$, phenyl ring protons), 7.26-7.22 (t, 2 H , phenyl ring protons), 7.21-7.19 ($\mathrm{d}, 2 \mathrm{H}$, phenyl ring proton), 7.12-7.10 ($\mathrm{d}, 2 \mathrm{H}$, phenyl ring proton); $6.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 5.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.82-4.78\left(\mathrm{q}, 1 \mathrm{H}\right.$, Phe $\left.^{\alpha} \mathrm{H}\right), 4.24-4.18(\mathrm{q}$, 1 H , Phe $\left.\mathrm{C}^{\alpha} \mathrm{H}\right)$, 3.69 (s, $3 \mathrm{H},-\mathrm{OCH} 3$), 3.17-3.10 (m, 1 H , Phe $\mathrm{C}^{\beta} \mathrm{H}$), 3.10-3.02 ($\mathrm{q}, 2 \mathrm{H}$, Phe $\mathrm{C}^{\beta} \mathrm{H}$), 3.00-2.94 (q, 1H, Phe $\mathrm{C}^{\beta} \mathrm{H}$), $1.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{BOC}-\mathrm{CH}_{3}\right), 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Aib} \mathrm{C}^{\alpha} \mathrm{H}\right), 1.32(\mathrm{~s}, 3 \mathrm{H}$, Aib $\mathrm{C}^{\alpha} \mathrm{H}$), ${ }^{13} \mathrm{C}$ NMR (100MHz, $\mathrm{CDCl}_{3}, \delta$ in ppm): 173.50, 171.88, 170.56, 155.50, 136.72, 135.99, $129.33,129.26,128.71,128.43,126.98,80.29,57.10,56.32,53.39,52.2,38.17,37.70,28.22$, 25.18, 24.53. Mass spectral data TOF-MS m/z: $[\mathrm{M}+\mathrm{Na}]^{+}=534$ with an isotope peak at 535 , $[\mathrm{M}+\mathrm{K}]^{+}=550$ with an isotope peak at $551 ; \mathrm{M}_{\text {cal }}=511$;

Synthesis of peptide 2:

Boc-Phe-Ala-OMe: This compound is synthesized according to previous report. ${ }^{\mathrm{S} 2}$
${ }^{1} \mathrm{H}$ NMR (400MHz, $\mathrm{CDCl}_{3}, \delta$ in ppm): 7.29-7.26 (m, 2H, phenyl ring protons), 7.23-7.18 (m, 2H, phenyl ring protons), $6.42(\mathrm{~s}, 1 \mathrm{H}$, Ala NH), 4.98($\mathrm{s}, 1 \mathrm{H}$, Phe NH$), 4.53-4.46\left(\mathrm{~m}, 1 \mathrm{H}\right.$, Phe $\left.\mathrm{C}^{\alpha} \mathrm{H}\right)$, 4.38-4.31 (m, 1H, Ala C ${ }^{\alpha} \mathrm{H}$), 3.69 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH} 3$), 3.09-3.00 (m, 2H, Phe $\mathrm{C}^{\beta} \mathrm{H}$), 1.39 (s, 9H, BOC $-\mathrm{CH}_{3}$), 1.33-1.31 (d, J=6.81, 3H, Ala $\left.-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): 173.05, $170.93,154.92,136.72,129.59,128.86,127.18,79.16,55.87,52.63,48.32,38.55,28.46,18.58 ;$

Mass spectral data TOF-MS m/z: $[\mathrm{M}+\mathrm{Na}]^{+}=372$ with an isotope peak at $373,[\mathrm{M}+\mathrm{K}]^{+}=388$ with an isotope peak at $389,[\mathrm{M}-\mathrm{Boc}+\mathrm{Na}]^{+}=273$ with an isotope peak at $274 ;[\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+}=251 ; \mathrm{M}_{\text {cal }}$ $=350$;

Boc-Phe-Ala-OH. To 2.80 g (8 mmol) of Boc-Phe-Ala-OMe, 25 mL MeOH and 2(M) 15 mL NaOH were added and the progress of saponification was monitored by thin layer chromatography (TLC). The reaction mixture was stirred. After 10 h , methanol was removed under vacuum; the residue was dissolved in 50 mL of water and washed with diethyl ether ($2 \times 50 \mathrm{~mL}$). Then the pH of the aqueous layer was adjusted to 2 using 1 M HCl and it was extracted with ethyl acetate (3 X 50 mL). The extracts were pooled, dried over anhydrous sodium sulfate, and evaporated under vacuum to obtained compound as a waxy solid. Yield: $2.46 \mathrm{~g}(7.30 \mathrm{mmol}, 91.20 \%)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}, δ in ppm): 12.66-12.50 (br, 1 H , Acid OH), 8.23 (s, 1H, Ala-NH), 7.31-7.27 ($\mathrm{m}, 3 \mathrm{H}$, phenyl ring protons), 7.23-7.20 ($\mathrm{m}, 2 \mathrm{H}$, phenyl ring protons), 6.88 ($\mathrm{s}, 1 \mathrm{H}$, PheNH), 4.26-4.4.22 (m, 2H, Phe $\mathrm{C}^{\alpha} \mathrm{H}$ and Ala $\mathrm{C}^{\alpha} \mathrm{H}$), 3.02-2.98 (m, 1 H , Phe $\mathrm{C}^{\beta} \mathrm{H}$), 2.75-2.69 (m, 1 H , Phe $\mathrm{C}^{\beta} \mathrm{H}$), 1.31 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{BOC}-\mathrm{CH} 3$), 1.24 (s, $3 \mathrm{H}, \mathrm{Ala} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMS0- d_{6}, δ in ppm): 174.14, 171.66, 155.29, 138.29, 129.28, 128.02, 126.18, 78.00, 55.52, 47.54, 37.44, 28.17, 17.28;

Boc-Phe-Ala-Phe-OMe (2). 2.01 g (6 mmol) of Boc-Phe-Ala-OH was dissolved in 25 mL DCM in an ice-water bath. H-Phe-OMe was isolated from $2.15 \mathrm{~g}(10 \mathrm{mmol})$ of the corresponding salt of methyl ester hydrochloride by neutralization and subsequent extraction with ethyl acetate and the ethyl acetate extract was concentrated to 10 mL . It was then added to the reaction mixture, followed immediately by $1.85 \mathrm{~g}(9 \mathrm{mmol})$ dicyclohexylcarbodiimide (DCC) and $1.21 \mathrm{~g}(9 \mathrm{mmol})$ of HOBt. The reaction mixture was allowed to come to room temperature and stirred for 48 h . DCM was evaporated and the residue was dissolved in ethyl acetate (60 mL) and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with $2 \mathrm{M} \mathrm{HCl}(3 \times 50 \mathrm{~mL})$, brine ($2 \times 50 \mathrm{~mL}$), 1M sodium carbonate ($3 \times 50 \mathrm{~mL}$) and brine ($2 \times 50 \mathrm{~mL}$) and dried over anhydrous sodium sulfate. It was evaporated in a vacuum to yield Boc-Phe-Ala-Phe- OMe. Purification was done by silica gel column (60-120 mesh size) with an ethyl acetate and hexane mixture 1: 4 as the eluent. Yield 1.88 g ($3.8 \mathrm{mmol}, 63 \%$).
${ }^{1} \mathrm{H}$ NMR (400MHz, $\mathrm{CDCl}_{3}, \delta$ in ppm): 7.28-7.24 (t, 4H, phenyl ring protons), 7.22-7.18 (t, 2H, phenyl ring protons), 7.16-7.12 ($\mathrm{d}, 2 \mathrm{H}$, phenyl ring proton), 7.10-7.07 ($\mathrm{d}, 2 \mathrm{H}$, phenyl ring proton), 6.84-6.80 (d, $1 \mathrm{H}, \mathrm{NH}$), 6.7($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), $5.16-5.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.81-4.75\left(\mathrm{q}, 1 \mathrm{H}\right.$, Phe $\left.\mathrm{C}^{\alpha} \mathrm{H}\right), 4.5-$ 4.42(q, 1H, Phe C ${ }^{\alpha} \mathrm{H}$), 4.4-4.3 (m,1H, Ala C ${ }^{\alpha} \mathrm{H}$), $3.67(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH} 3), 3.08-3.03\left(\mathrm{~m}, 2 \mathrm{H}\right.$, Phe $\left.\mathrm{C}^{\beta} \mathrm{H}\right)$, 3.04-2.94 (m, 2H, Phe $\left.\mathrm{C}^{\beta} \mathrm{H}\right), 1.38\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{BOC}-\mathrm{CH}_{3}\right), 1.26-1.24\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{Ala} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): $171.65,171.45,171.08,155.40,136.48,135.75,129.31,129.15$, 128.52, 127.07, 126.83, 80.09, 55.42, 53.39, 52.24, 48.74, 38.17, 37.77, 28.17, 18.28. Mass spectral data TOF-MS m/z: $[\mathrm{M}+\mathrm{Na}]^{+}=520$ with an isotope peak at $521,[\mathrm{M}+\mathrm{K}]^{+}=536, \mathrm{M}_{\mathrm{cal}}=497$.

Synthesis of peptide 3:

Boc-Phe-PG-OMe: 2.65 g (10 mmol) of Boc-Phe-OH was dissolved in 25 mL DCM in an icewater bath. H-PG-OMe was isolated from $3.01 \mathrm{~g}(15 \mathrm{mmol})$ of the corresponding methyl ester hydrochloride by neutralization and subsequent extraction with ethyl acetate and the ethyl acetate extract was concentrated to 10 mL . It was then added to the reaction mixture, followed immediately by $2.47 \mathrm{~g}(12 \mathrm{mmol}) \mathrm{N}, \mathrm{N}^{\prime}$-dicyclohexylcarbodiimide (DCC) and $1.62 \mathrm{~g}(12 \mathrm{mmol})$ of HOBt. The reaction mixture was allowed to come to room temperature and stirred for 48 h . DCM was evaporated and the residue was dissolved in ethyl acetate (60 mL) and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with $2 \mathrm{M} \mathrm{HCl}(3 \times 50 \mathrm{~mL})$, brine ($2 \times 50 \mathrm{~mL}$), 1 M sodium carbonate ($3 \times 50 \mathrm{~mL}$) and brine $(2 \times 50 \mathrm{~mL})$ and dried over anhydrous sodium sulfate. It was evaporated in a vacuum to yield Boc-Phe-PG-OMe as a white solid.
${ }^{1} \mathrm{H}$ NMR (400MHz, $\mathrm{CDCl}_{3}, \delta$ in ppm): 7.30-7.26 (t, 4H, phenyl ring protons), 7.26-7.24 (t, 2 H , phenyl ring protons), 7.23-7.21 ($\mathrm{d}, 2 \mathrm{H}$, phenyl ring proton), 7.16-7.12 ($\mathrm{d}, 2 \mathrm{H}$, phenyl ring proton), 7.01 (s, 1H, NH proton), 5.49-5.47 (s, 1H, NH proton), $5.05\left(\mathrm{~m}, 1 \mathrm{H}\right.$, Phe $\left.^{\alpha}{ }^{\alpha} \mathrm{H}\right), 4.43(\mathrm{~b}, 1 \mathrm{H}$, Phe $\mathrm{C}^{\alpha} \mathrm{H}$), 3.65 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH} 3$), 3.08-3.00 (m, 2H, Phe $\mathrm{C}^{\beta} \mathrm{H}$), $1.37\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{BOC}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): $170.65,170.60,155.29,136.39,136.10,129.30,128.80,128.41$, $127.14,126.81,80.16,56.38,55.40,52.68,28.15$; Mass spectral data TOF-MS m/z: $[\mathrm{M}+\mathrm{Na}]^{+}=$ 435 with an isotope peak at $436,[\mathrm{M}-\mathrm{Boc}+\mathrm{Na}]^{+}=335$ with an isotope peak at $336 ;[\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+}=$ $313 ;[2 \mathrm{M}+\mathrm{Na}]^{+}=847$ with an isotope peak at $848 . \mathrm{M}_{\text {cal }}=412$;

Boc-Phe-PG-OH. To 2.88 g (7 mmol) of Boc-Phe-PG-OMe, 25 mL MeOH and 2(M) 15 mL NaOH were added and the progress of saponification was monitored by thin layer chromatography (TLC). The reaction mixture was stirred. After10 h, methanol was removed under vacuum; the
residue was dissolved in 50 mL of water and washed with diethyl ether ($2 \times 50 \mathrm{~mL}$). Then the pH of the aqueous layer was adjusted to 2 using 1 M HCl and it was extracted with ethyl acetate (3 X 50 mL). The extracts were pooled, dried over anhydrous sodium sulfate, and evaporated under vacuum to obtained compound as a waxy solid.
${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl_{3}, δ in ppm): $12.9(\mathrm{~b}, 1 \mathrm{H}-\mathrm{COOH}$ proton): 8.66-8.56 (d, $1 \mathrm{H}, \mathrm{NH}$ proton), 7.46-7.42 ($\mathrm{d}, 1 \mathrm{H}$, phenyl ring protons), 7.42-7.38 ($\mathrm{d}, 1 \mathrm{H}$, phenyl ring protons), 7.38-7.35 ($\mathrm{d}, 2 \mathrm{H}$, phenyl ring proton), $7.35-7.30(\mathrm{~m}, 2 \mathrm{H}$, phenyl ring proton), $7.29-7.27(\mathrm{~d}, 1 \mathrm{H}$, phenyl ring proton) ,7.27-7.23 ($\mathrm{d}, 2 \mathrm{H}$, phenyl ring proton), 7.21-7.15 ($\mathrm{m}, 1 \mathrm{H}$, phenyl ring proton), 7.01-6.93 ($\mathrm{d}, 1 \mathrm{H}$, NH proton), 5.39-5.34 (t, 1H, Phe $\left.\mathrm{C}^{\alpha} \mathrm{H}\right), ~ 4.38-4.28\left(\mathrm{~m}, 1 \mathrm{H},{\left.\text { Phe } \mathrm{C}^{\alpha} \mathrm{H}\right), ~ 3.05-2.9\left(\mathrm{~m}, 1 \mathrm{H} \text {, Phe } \mathrm{C}^{\beta} \mathrm{H}\right) \text {, }}_{\text {, }}\right.$ 2.78-2.64 (m, 1H, Phe C ${ }^{\beta} \mathrm{H}$), 1.3 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{BOC}-\mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): 171.80 $171.60,155.22,138.17,137.05,129.26,128.53,127.99,127.56,127.26,126.19,78.08,56.24$, 55.47, 28.13 ; Mass spectral data TOF-MS m/z: $[\mathrm{M}+\mathrm{Na}]^{+}=421$ with an isotope peak at $422, ;[\mathrm{M}-$ $\mathrm{Boc}+\mathrm{Na}]^{+}=321$ with an isotope peak at $322 ;[\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+}=299 ; \mathrm{M}_{\text {cal }}=398$;

Boc-Phe-PG-Phe-OMe (3). 2.388 g (6 mmol) of Boc-Phe-PG-OH was dissolved in 25 mL DCM in an ice-water bath. H-Phe-OMe was isolated from $2.15 \mathrm{~g}(10 \mathrm{mmol})$ of the corresponding salt of methyl ester hydrochloride by neutralization and subsequent extraction with ethyl acetate and the ethyl acetate extract was concentrated to 10 mL . It was then added to the reaction mixture, followed immediately by $1.85 \mathrm{~g}(9 \mathrm{mmol})$ dicyclohexylcarbodiimide (DCC) and $1.21 \mathrm{~g}(9 \mathrm{mmol})$ of HOBt. The reaction mixture was allowed to come to room temperature and stirred for 48 h . DCM was evaporated and the residue was dissolved in ethyl acetate (60 mL) and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with $2 \mathrm{M} \mathrm{HCl}(3 \times 50 \mathrm{~mL})$, brine ($2 \times 50 \mathrm{~mL}$), 1M sodium carbonate ($3 \times 50 \mathrm{~mL}$) and brine ($2 \times 50 \mathrm{~mL}$) and dried over anhydrous sodium sulfate. It was evaporated in a vacuum to yield Boc-Phe(1)-PG(2)-Phe(3)- OMe. Purification was done by silica gel column (60-120 mesh size) with an ethyl acetate and hexane mixture 1:3 as the eluent.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): 7.34-7.27 (5 H , phenyl ring protons), 7.25-7.17 (5 H , phenyl ring protons), 7.16-7.08 $(4 \mathrm{H}$, phenyl ring proton), 7.05-7.03 ($\mathrm{d}, 2 \mathrm{H}, \mathrm{NH}$), 7.02-7.00 $(2 \mathrm{H}$, phenyl ring protons), 6.63-6.61 (d, $1 \mathrm{H}, \mathrm{NH}), 6.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{PG} \mathrm{C}^{\alpha} \mathrm{H}\right) 5.32-5.28\left(\mathrm{~m}, 1 \mathrm{H}\right.$, Phe $\left.^{\alpha} \mathrm{H}\right), 4.79-$ 4.73 (m, 1H, Phe $\mathrm{C}^{\alpha} \mathrm{H}$), 3.63 (s, 3H,-OCH3), 3.17-3.13 (m, 1H, Phe $\mathrm{C}^{\beta} \mathrm{H}$), 3.08-3.02 (m, 2H, Phe $\left.\mathrm{C}^{\beta} \mathrm{H}\right)$, 2.98-2.94 (m, 1 H , Phe $\left.\mathrm{C}^{\beta} \mathrm{H}\right), 1.39\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{BOC}-\mathrm{CH}_{3}\right), .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$ in
ppm): 171.84, 171.78, 171.33, 155.85, 136.94, 136.13, 129.78, 129.65, 129.53, 129.23, 128.99 , $128.76,128.59,127.76,127.61,127.53,127.28,127.25,127.12,80.49,57.36,57.01,54.09,53.60$, 38.05, 38.16, 28.66. Mass spectral data TOF-MS m/z: $[\mathrm{M}+\mathrm{Na}]^{+}=582$ with an isotope peak at $583,[\mathrm{M}+\mathrm{K}]^{+}=598$ with an isotope peak at $599 ;[\mathrm{M}+\mathrm{Na}]^{+}=1141$ with an isotopic peak at $1142 ; \mathrm{M}_{\mathrm{cal}}=559$.

Synthesis of peptide 4:

Boc-Phe-AC-OMe: 2.65 g (10 mmol) of Boc-Phe-OH was dissolved in 25 mL DCM in an icewater bath. H-AC-OMe was isolated from $2.89 \mathrm{~g}(15 \mathrm{mmol})$ of the corresponding methyl ester hydrochloride by neutralization and subsequent extraction with ethyl acetate and the ethyl acetate extract was concentrated to 10 mL . It was then added to the reaction mixture, followed immediately by $2.47 \mathrm{~g}(12 \mathrm{mmol}) \mathrm{N}, \mathrm{N}$-dicyclohexylcarbodiimide (DCC) and $1.62 \mathrm{~g}(12 \mathrm{mmol})$ of HOBt . The reaction mixture was allowed to come to room temperature and stirred for 48 h . DCM was evaporated and the residue was dissolved in ethyl acetate (60 mL) and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with $2 \mathrm{M} \mathrm{HCl}(3 \times 50 \mathrm{~mL})$, brine $(2 \times 50 \mathrm{~mL})$, 1 M sodium carbonate $(3 \times 50 \mathrm{~mL})$ and brine $(2 \times 50 \mathrm{~mL})$ and dried over anhydrous sodium sulfate. It was evaporated in a vacuum to yield Boc-Phe-AC-OMe as a white solid. Yield: 2.55 g (6.3 mmol, 63\%).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$ in ppm$): 7.3-7.22(\mathrm{~m}, 5 \mathrm{H}$, phenyl ring protons), $6.3(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$ proton), 5.2-5.16 (d, 1H, NH proton), 4.40-4.30 (m, 1H, Phe $\mathrm{C}^{\alpha} \mathrm{H}$), 3.67 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH} 3$), 3.083.02 ($\mathrm{m}, 2 \mathrm{H}$, Phe $\mathrm{C}^{\beta} \mathrm{H}$), 1.94-1.88 ($\mathrm{m}, 2 \mathrm{H}$, cyclohexane ring), 1.79-1.71 ($\mathrm{m}, 2 \mathrm{H}$, cyclohexane ring), 1.58-1.48 (m, 4H, cyclohexane ring), $1.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{BOC}-\mathrm{CH}_{3}\right), 1.24-1.18(\mathrm{~m}, 2 \mathrm{H}$, cyclohexane ring). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$ in ppm): $174.20,170.46,156,136.86,129.35,128.55,126.80$, $80.20,58.69,55.50,52.16,37.61,32.20,31.93,29.62,28.18,24.91,21.14,21.03$. Mass spectral data TOF-MS m/z: $[\mathrm{M}+\mathrm{Na}]^{+}=427$ with an isotope peak at $428,[\mathrm{M}-\mathrm{Boc}+\mathrm{Na}]^{+}=327$ with an isotope peak at $305 ;[\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+}=251 ; \mathrm{M}_{\mathrm{cal}}=404$;

Boc-Phe-Ac-OH. To 2.43 g (6 mmol) of Boc-Phe-AC-OMe, 25 mL MeOH and 2(M) 10 mL NaOH were added and the progress of saponification was monitored by thin layer chromatography (TLC). The reaction mixture was stirred. After 10 h , methanol was removed under vacuum; the residue was dissolved in 50 mL of water and washed with diethyl ether ($2 \times 50 \mathrm{~mL}$). Then the pH of the aqueous layer was adjusted to 2 using 1 M HCl and it was extracted with ethyl acetate (3 X

50 mL). The extracts were pooled, dried over anhydrous sodium sulfate, and evaporated under vacuum to obtained compound as a waxy solid.
${ }^{1} \mathrm{H}$ NMR (400MHz, DMSO- d_{6}, δ in ppm): 12.4-11.6 (b, 1H, COOH Proton), 7.78 (s, 1H, NH proton) , 7.39-7.28 (m, 4H, phenyl ring protons), 7.20-7.14 (t, 1 H , phenyl ring protons), 6.86-6.82 (d, 1H, NH proton), 4.25-4.19 (m, 1H, Phe $\mathrm{C}^{\alpha} \mathrm{H}$), 2.96-2.90 (m, 1H, Phe $\mathrm{C}^{\beta} \mathrm{H}$), 2.76-2.70 (m, 1H, Phe $\mathrm{C}^{\beta} \mathrm{H}$), 1.68-1.58 (m,2H,cyclohexane ring), 1.52-1.4 (m, 4H, cyclohexane ring), $1.28(\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{BOC}-\mathrm{CH}_{3}$), 1.24-1.21 (m, 4 H , cyclohexane ring). ${ }^{13} \mathrm{C}$ NMR (100 MHz DMSO- d_{6}, δ in ppm): $175.39,171.29,155.11,138.15,129.23,127.95,126.11,77.94,57.63,55.53,37.39,31.75,31.30$, 28.08, 27.82, 24.94, 20.89. Mass spectral data TOF-MS m/z: $[\mathrm{M}+\mathrm{Na}]^{+}=413$ with an isotope peak at 414, , $[\mathrm{M}-\mathrm{Boc}+\mathrm{Na}]^{+}=313$ with an isotope peak at $314 ;[\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+}=291 ; \mathrm{M}_{\text {cal }}=390$;

Boc-Phe-AC-Phe-OMe (4). 2.01 g (6 mmol) of Boc-Phe-Ala-OH was dissolved in 25 mL DCM in an ice-water bath. H-Phe-OMe was isolated from $2.15 \mathrm{~g}(10 \mathrm{mmol})$ of the corresponding salt of methyl ester hydrochloride by neutralization and subsequent extraction with ethyl acetate and the ethyl acetate extract was concentrated to 10 mL . It was then added to the reaction mixture, followed immediately by 1.85 g (9 mmol) dicyclohexylcarbodiimide (DCC) and $1.21 \mathrm{~g}(9 \mathrm{mmol})$ of HOBt. The reaction mixture was allowed to come to room temperature and stirred for 48 h . DCM was evaporated and the residue was dissolved in ethyl acetate (60 mL) and dicyclohexylurea (DCU) was filtered off. The organic layer was washed with $2 \mathrm{M} \mathrm{HCl}(3 \times 50 \mathrm{~mL})$, brine ($2 \times 50 \mathrm{~mL}$), 1M sodium carbonate ($3 \times 50 \mathrm{~mL}$) and brine ($2 \times 50 \mathrm{~mL}$) and dried over anhydrous sodium sulfate. It was evaporated in a vacuum to yield Boc-Phe-AC-Phe-OMe. Purification was done by silica gel column (60-120 mesh size) with an ethyl acetate and hexane mixture 1:5 as the eluent. Yield 1.82 g ($3.3 \mathrm{mmol}, 55 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): 7.29-7.25 (t, 4H, phenyl ring protons), 7.22-7.18 (t, 4H, phenyl ring protons), 7.15-7.11 ($\mathrm{d}, 2 \mathrm{H}$, phenyl ring proton), $6.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.96(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, 4.81-4.75 (q, 1H, Phe $\mathrm{C}^{\alpha} \mathrm{H}$), 4.28-4.22 (q, 1H, Phe $\mathrm{C}^{\alpha} \mathrm{H}$), 3.67 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH}_{3}$), 3.18-3.10 (m, 1 H , Phe $\mathrm{C}^{\beta} \mathrm{H}$), 3.08-3.00 (m, 3H, Phe $\mathrm{C}^{\beta} \mathrm{H}$), $1.58\left(\mathrm{~s}, 4 \mathrm{H}\right.$, cyclohexane ring), $1.39\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{BOC}-\mathrm{CH}_{3}\right)$, 1.23 (s, 6 H , cyclohexane ring). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$ in ppm): $174.15,172.52,171.69$. $156.11,137.30,136.72,129.8,129.25,128.84,127.43,127.32,80.91,60.61,56.65,53.92,52.57$, $38.29,32.30,32.20,30.11,28.65,25.38,21.50,21.44$.Mass spectral data TOF-MS m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ $=574$ with an isotope peak at $575, \mathrm{M}_{\mathrm{cal}}=551$

Synthesis of Peptide 5-7:

We have synthesized peptide 5 , peptide 6 and peptide 7 by following the above procedure and characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectroscopy and Mass spectrometry.

Boc-Leu-Ala-Leu-OMe (5):

${ }^{1} \mathrm{H}$ NMR (400MHz, $\mathrm{CDCl}_{3}, \delta$ in ppm): 7.14-7.10 ($1 \mathrm{H}, \mathrm{d}$, NH Proton); 7.09-7.04 ($1 \mathrm{H}, \mathrm{d}, \mathrm{NH}$ Proton); 5.25-5.20 (1H, d, NH Proton); 4.59-4.48 ($2 \mathrm{H}, \mathrm{m}$, Leu $\mathrm{C}^{\alpha} \mathrm{H}$); 4.17-4.11 (1H, m, Ala $\mathrm{C}^{\alpha} \mathrm{H}$); 3.67 (3H, S, OMe); 1.61-1.56 (2H, m, Leu C ${ }^{\beta} \mathrm{H}$); 1.55-1.50 ($2 \mathrm{H}, \mathrm{m}$, Leu $\mathrm{C}^{\beta} \mathrm{H}$); 1.48-1.43 (2H, m, Leu $\left.\mathrm{C}^{\gamma} \mathrm{H}\right)$; $1.38\left(9 \mathrm{H}, \mathrm{s}\right.$, Boc $\left.\mathrm{CH}_{3}\right)$; 1.31-1.29 (3H, d, Ala CH 3); 0.94-0.90 (12 H , m, Leu CH3 $)$. ${ }^{13} \mathrm{C}$ NMR (100MHz, $\mathrm{CDCl}_{3}, \delta$ in ppm): 173.57, 173.17, 172.45, 156.13, 80.32, 53.39, 52.64, 51.17, 49.02, 41.94, 41.50, 28.69, 25.12, 23.39, 23.17, 22.19, 18.43

Boc-Val-Ala-Val-OMe (6):

${ }^{1} \mathrm{H}$ NMR (400MHz, $\mathrm{CDCl}_{3}, \delta$ in ppm): 7.24-7.20 ($1 \mathrm{H}, \mathrm{d}$, NH Proton); 7.15-7.11 ($1 \mathrm{H}, \mathrm{d}, \mathrm{NH}$ Proton); 5.45-5.41 (1H, d, NH Proton); 4.66-4.62 (1H, m, Ala C $\left.{ }^{\alpha} \mathrm{H}\right)$; 4.47-4.43 (1H, m, Val C ${ }^{\alpha} \mathrm{H}$); 4.02-3.96 43 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Val} \mathrm{C}^{\alpha} \mathrm{H}$); 3.67 (3H, S, OMe); 2.13-2.01 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Val} \mathrm{C}^{\beta} \mathrm{H}$); 1.37 ($9 \mathrm{H}, \mathrm{s}$, Boc $\left.\mathrm{CH}_{3}\right)$; 1.32-1.28 (3H, d, Ala CH3); 0.9-0.88 (12H, m, Val CH3 $) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, δ in ppm): $172.74,172.60,172.17,156.33,80.01,60.06,57.73,52.46,49.15,31.57,31.42,28.66$, 19.66, 19.30, 18.70, 18.18.

Boc-Ala-Ala-Ala-OMe (7):

${ }^{1} \mathrm{H}$ NMR (400MHz, $\mathrm{CDCl}_{3}, \delta$ in ppm): 6.90-6.84 $(1 \mathrm{H}, \mathrm{d}$, NH Proton); 6.84-6.78 ($1 \mathrm{H}, \mathrm{d}, \mathrm{NH}$ proton); 5.12-5.06 (1 H , d, NH Proton); 4.57-4.47 ($2 \mathrm{H}, \mathrm{m}$, Ala $\mathrm{C}^{\alpha} \mathrm{H}$); 4.21-4.11 ($1 \mathrm{H}, \mathrm{m}$, Ala $\mathrm{C}^{\alpha} \mathrm{H}$); 3.73 (3H, S, OMe); 1.43 ($9 \mathrm{H}, \mathrm{s}$, Boc CH_{3}); 1.41-1.38 (3H, d, Ala CH_{3}); 1.37-1.34 (6 H , d, Ala CH_{3}). ${ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}, δ in ppm): 173.58, 173.13, 172.17, 156, 80.68, 52.91, 50.5, 49.22, 48.57, 28.75, 18.90, 18.74, 18.51

Figure S1: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of Boc-Phe-Aib-OMe.

Figure S2: ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of Boc-Phe-Aib-OMe.

Figure S3: Mass spectrum of Boc-Phe-Aib-OMe

Figure S4: ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) spectrum of Boc-Phe-Aib-OH.

Figure S5: ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) spectrum of Boc-Phe-Aib-OH.

Figure S6: Mass spectrum of Boc-Phe-Aib-OH.

Figure S7: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of Boc-Phe-Aib-Phe-OMe.

Figure S8: ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of Boc-Phe-Aib-Phe-OMe.

Figure S9: Mass spectrum of Boc-Phe-Aib-Phe-OMe.

Figure S10: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of Boc-Phe-Ala-OMe.

Figure S11: ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of Boc-Phe-Ala-OMe.

Figure S12: Mass spectrum of Boc-Phe-Ala-OMe.

Figure S13: ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) spectrum of Boc-Phe-Ala-OH.

Figure S14: ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) spectrum of Boc-Phe-Ala-OH.

Figure S15: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of Boc-Phe-Ala-Phe-OMe.

Figure S16: ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of Boc-Phe-Ala-Phe-OMe.

Figure S17: Mass Spectrum of Boc-Phe-Ala-Phe-OMe.

Figure S18: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of Boc-Phe-PG-OMe.

Figure S19: ${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of Boc-Phe-PG-OMe.

Figure S20: Mass spectrum of Boc-Phe-PG-OMe.

Figure S21: ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) spectrum of Boc-Phe-PG-OH.

Figure S22: ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) spectrum of Boc-Phe-PG-OH.

Figure S23: Mass Spectrum of Boc-Phe-PG-OH.

Figure S24: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of Boc-Phe-PG-Phe-OMe.

Figure S25: ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of Boc-Phe-PG-Phe-OMe.

Figure S26: Mass spectrum of Boc-Phe-PG-Phe-OMe.

Figure S27: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of Boc-Phe-AC-OMe.

Figure S28: ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of Boc-Phe-AC-OMe.

Figure S29: Mass spectrum of Boc-Phe-AC-OMe

Figure S30: ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) spectrum of Boc-Phe-AC-OH.

Figure S31: ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) spectrum of Boc-Phe-AC-OH.

Figure S32: Mass spectrum of Boc-Phe-AC-OH

Figure S33: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of Boc-Phe-AC-Phe-OMe.

Figure S34: ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of Boc-Phe-AC-Phe-OMe.

Figure S35: Mass spectrum of Boc-Phe-AC-Phe-OMe.

Figure S36: ${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl_{3}) spectrum of Boc-Leu-Ala- Leu-OMe.

Figure S37: ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of Boc-Leu-Ala- Leu-OMe.

Figure S38: Mass spectrum of Boc-Leu-Ala- Leu-OMe.

Figure S39: ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of Boc-Val-Ala- Val-OMe.

Figure S40: ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of Boc-Val-Ala-Val-OMe.

Figure S41: Mass spectrum of Boc-Val-Ala- Val-OMe.

Figure S42: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of Boc-Ala-Ala- Ala-OMe.

Figure S43: ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of Boc-Ala-Ala- Ala-OMe.

Figure S44: Mass spectrum of Boc-Ala-Ala-Ala-OMe.

Reference:

S1. A. Dutt, R. Frohlich and A. Pramanik, Org. Biomol. Chem., 2005, 3, 661-665.
S2. T. Pospišil, L. F. Hamzić, L. B. Ahmed, M. Lovrić, S. Gajović and L. Frkanec, Biomater. Sci., 2016, 4, 1412-1416.

