Electronic Supplementary Information

A new strategy to synthesize three-coordinate mononuclear copper(I) halide complexes containing bulky terphenyl bidentate phosphine ligand and their luminescent properties

Li-Ping Liu, Rui Zhang, Li Liu^{*}, Xin-Xin Zhong^{*}, Fa-Bao Li, Lei Wang^{*}, Wai-Yeung Wong^{*}, Guang-Hua Li, Heng-Jiang Cong^{*}, Njud S. Alharbi, Yi Zhao

Contents

Experimental Details

1. NMR Experiments

Fig. S1 ¹H NMR spectrum of 1 in CDCl₃.

Fig. S2 ¹H NMR spectrum of 2 in CDCl₃.

Fig. S3 ¹H NMR spectrum of 3 in CDCl₃.

Fig. S4 ³¹P NMR spectrum of 1 in CDCl₃.

Fig. S5 ³¹P NMR spectrum of 2 in CDCl₃.

Fig. S6 ³¹P NMR spectrum of 3 in CDCl₃.

2. Molecular structures

Fig. S7. 1-D molecular structure and C–H··· π interactions in 1.

Fig. S8. 1-D molecular structure and C–H··· π interactions in 2.

Fig. S9. 1-D molecular structure and C–H··· π interactions in **3**.

3. Photophysical properties

Fig. S10. Time profiles of luminescence decay and exponential fit spectrum of 1 at r.t.

Fig. S11. Time profiles of luminescence decay and exponential fit spectrum of 2 at r.t.

Fig. S12. Time profiles of luminescence decay and exponential fit spectrum of 3 at r.t.

Fig. S13. Time profiles of luminescence decay and exponential fit spectrum of 1 at 77 K.

Fig. S14. Time profiles of luminescence decay and exponential fit spectrum of 2 at 77 K.

Fig. S15. Time profiles of luminescence decay and exponential fit spectrum of 3 at 77 K.

4. Computational details

Fig. S16. The absorption spectrum of complex 1 in CH_2Cl_2 .

Fig. S17. The absorption spectrum of complex 2 in CH_2Cl_2 .

Fig. S18. The absorption spectrum of complex 3 in CH_2Cl_2 .

Fig. S19. Contour plots of frontier molecular orbitals of complexes 1-3 in CH₂Cl₂.

Fig. S20. The optimized S_1 geometry, electron cloud distribution of HOMO and LUMO at S_1 geometry for complexes 1–3.

Fig. S21. The optimized T_1 geometry, electron cloud distribution of HOMO and LUMO at T_1 geometry for complexes **1–3**.

Fig. S22. The core structures in the optimized S_0 , S_1 , and T_1 geometries for complexes 1-3.

Table S1. Selected bond lengths and angles in the optimized S_0 , S_1 , and T_1 geometries for complexes 1-3.

Table S2. Computed excitation states for complex 1 in CH₂Cl₂.

Table S3. Computed excitation states for complex 2 in CH₂Cl₂.

Table S4. Computed excitation states for complex 3 in CH₂Cl₂.

Table S5. Calculated emission wavelength (λ), oscillator strength (f) and main configuration of complexes 1-3 along with their experimental values ($\lambda_{expt.}$).

Table S6. Calculated vertical excitation energies of singlet and triplet excited states as well as the energy gap of complexes **1-3** at the X-ray structure, the optimized S_0 , S_1 and T_1 geometries.

Experimental Details

1. NMR Experiments

Fig. S6. ³¹P NMR spectrum of 3 in CDCl₃.

2. Molecular structures

Fig. S7. 1-D molecular structure and C–H··· π interactions in 1.

Fig. S8. 1-D molecular structure and C–H··· π interactions in 2.

Fig. S9. 1-D molecular structure and C–H··· π interactions in **3**.

3. Photophysical properties

Fig. S10. Time profiles of luminescence decay and exponential fit spectrum of 1 at r.t.

Fig. S11. Time profiles of luminescence decay and exponential fit spectrum of 2 at r.t.

T3 3.543E-3 5.295E-5 B3 3.761E+2 1.089E+1 47.83 Chisq 1.261E+0 A 4.369E+0

Fig. S14. Time profiles of luminescence decay and exponential fit spectrum of 2 at 77 K.

Fig. S15. Time profiles of luminescence decay and exponential fit spectrum of 3 at 77 K.

4. Computational details

Fig. S17. The absorption spectrum of complex 2 in CH_2Cl_2 .

НОМО

HOMO-1

LUMO

LUMO+1

LUMO+2

HOMO-3

HOMO-4

LUMO+3

LUMO+4

НОМО

LUMO

HOMO-1

HOMO-2

HOMO-3

HOMO-4

LUMO+1

LUMO+2

LUMO+3

LUMO+4

НОМО

HOMO-1

HOMO-2

HOMO-3

LUMO

LUMO+1

LUMO+2

LUMO+3

HOMO-4

LUMO+4

Fig. S19. Contour plots of frontier molecular orbitals of complexes 1-3 in CH₂Cl₂.

3

The optimized S₁ geometry

HOMO E = -4.71 eV

LUMO E = -1.79 eV

1

The optimized S₁ geometry

HOMO E = -4.71 eV

LUMO E = -1.77 eV

Fig. S20. The optimized S_1 geometry, electron cloud distribution of HOMO and LUMO at S_1 geometry for complexes 1–3.

HOMO E = -4.97 eV

LUMO E = -2.10 eV

The optimized T_1 geometry

The optimized T₁ geometry

HOMO E = -4.83 eV

2

LUMO E = -1.75 eV

The optimized T₁ geometry

HOMO E = -4.78 eV3

LUMO E = -1.71 eV

Fig. S21. The optimized T_1 geometry, electron cloud distribution of HOMO and LUMO at T_1 geometry for complexes **1–3**.

Fig. S22. The core structures in the optimized S_0 , S_1 , and T_1 geometries for complexes 1-3.

Complex	Geometry	Cu–X	Cu–P	P–Cu–P	P–Cu–X
	\mathbf{S}_0	2.5742	2.3240, 2.3227	112.61	127.51, 119.41
1	\mathbf{S}_1	2.5346	2.3360, 2.3569	110.00	143.91, 103.03
	T_1	2.5580	2.3320, 2.3222	107.79	128.91, 123.09
	\mathbf{S}_0	2.3915	2.3159, 2.3171	112.56	119.56, 127.61
	\mathbf{S}_1	2.3286	2.3605, 2.3374	106.62	103.39, 146.98
2	T_1	2.3398	2.3261, 2.3330	102.57	120.31, 134.74
	\mathbf{S}_0	2.2708	2.3092, 2.3073	112.65	127.47, 119.69
3	\mathbf{S}_1	2.2069	2.3398, 2.3643	105.29	147.85, 104.17
	T_1	2.2222	2.3238, 2.3339	101.45	139.73, 115.83

Table S1. Selected bond lengths (Å) and angles (°) in the optimized S₀, S₁, and T₁ geometries for complexes **1-3**

Table S2. Computed excitation states for complex 1 in CH_2Cl_2 .

State	$\lambda(nm)/E(eV)$	Configurations	f
1	348.2 (3.56)	$H \rightarrow L(98)$	0.0016
12	288.7 (4.29)	H-3 \rightarrow L (81); H-1 \rightarrow L+1 (4) ; H-1 \rightarrow L+2 (6)	0.0523
19	279.0 (4.44)	H-3→L+1 (17); H-1→L+3 (35); H-1→L+4 (25); H→L+9 (12)	0.0602
20	277.5 (4.47)	H-3→L+1 (54); H-3→L+2 (4); H-1→L+3 (12);	0.0656

		H-1 \rightarrow L+5 (2); H \rightarrow L+9 (15); H \rightarrow L+10 (3)	
21	$2(2 \ 4 \ (4 \ 71))$	H-6→L (3); H-4→L+1 (15); H-3→L+4 (50);	0.0567
31	203.4 (4.71)	H-2→L+5 (11); H→L+12 (6)	0.0307
40	2540(499)	H-7→L (48); H-5→L (4); H-5→L+1 (11);H-5→L+4 (2);	0.0775
42	254.0 (4.88)	H-3→L+6 (3); H-1→L+9 (5); H→L+11 (3)	0.0775
		H-10→L (6); H-10→L+1 (4); H-8→L+3 (4); H-8→L+4 (2);	
78	237.1 (5.23)	H-7→L+2 (12); H-6→L+2 (3); H-6→L+3 (25); H-6→L+4 (7);	0.0586
		H-5→L+2 (2); H-5→L+4 (2); H-4→L+7 (4); H-3→L+9 (2)	
		H-15→L (5); H-14→L (3); H-11→L (4); H-10→L+1 (4);	
01	222.1(5.24)	H-9→L+1 (5); H-8→L+3 (24); H-7→L+3 (3);	0.0501
91	232.1 (3.34)	H-5→L+6 (3); H-4→L+8 (9); H-3→L+10 (3);	0.0301
		H-3→L+12 (2); H-1→L+13 (6); H-1→L+14 (5)	
		H-15→L (6); H-14→L (6); H-13→L (2); H-9→L+1 (5);	
93	230.8 (5.37)	H-8→L+3 (26); H-8→L+4 (11); H-7→L+3 (3); H-7→L+4 (5);	0.0628
		H-6→L+3 (5); H-6→L+5 (2); H-5→L+6 (3)	

Table S3. Computed excitation states for complex 2 in CH_2Cl_2 .

State	$\lambda(nm)/E(eV)$	Configurations	f	
1	347.1 (3.57)	$H \rightarrow L (98)$	0.0015	
10	285.4 (4.34)	H-2→L (71); H-1→L+1 (15); H→L+7 (2)	0.0585	
18	272.9 (4.54)	H-1→L+3 (90)	0.0614	
19	270.8 (4.58)	H-2→L+1 (5); H-2→L+2 (2); H→L+10 (85)	0.0516	
21	21 257 5 (4.01)	$H-4 \rightarrow L+1$ (41); $H-3 \rightarrow L+4$ (5); $H-2 \rightarrow L-4$	H-4→L+1 (41); H-3→L+4 (5); H-2→L+4 (10);	0.0215
51	257.5 (4.81)	$H-1 \rightarrow L+8$ (5); $H \rightarrow L+11$ (10); $H \rightarrow L+12$ (9)	0.0815	
32	256.7 (4.83)	H-6→L (60); H-3→L+4 (9); H-2→L+3 (8); H-1→L+6 (5)	0.0585	
		H-10→L+1 (12); H-9→L+1 (6); H-9→L+2 (3);		
86	230.9 (5.37)	H-8→L+3 (13); H-7→L+3 (2); H-7→L+4 (3);	0.0685	
		H-6→L+6 (3); H-5→L+5 (12); H-2→L+10 (15)		
00	227 0 (5 46)	H-19→L (16); H-16→L (6); H-15→L (11); H-11→L+3 (3);	0.0567	
<u> </u>	227.0 (3.46)	$H-9 \rightarrow L+4$ (4); $H-7 \rightarrow L+3$ (4); $H-7 \rightarrow L+5$ (5); $H-6 \rightarrow L+6$ (6)	0.0307	

Table S4.	Computed	excitation	states t	for comp	lex 3 i	$n CH_2Cl_2$.
	1			1		

State	$\lambda(nm)/E(eV)$	Configurations	f	
1	348.1 (3.56)	$H \rightarrow L(98)$	0.0018	
15	276.0(4.40)	H-2→L+1 (33); H-2→L+4 (2); H-1→L+3 (22);	0.0607	
15 2/6.0 (4.49	270.0 (4.49)	H-1 \rightarrow L+4 (16); H \rightarrow L+9 (14)	0.0697	
18	270.1 (4.59)	H-1→L+3 (35); H-1→L+4 (54); H→L+10 (3)	0.0541	
20	$\mathbf{D} = \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D}$	H-4→L+1 (6); H-3→L+1 (51); H-3→L+2 (3) ; H-2→L+4 (12);	0.0670	
29	230.9 (4.85)	H-1→L+6 (4); H-1→L+8 (2); H→L+12 (2)		
31	254.0 (4.88)	H-6→L (20); H-5→L (4); H-5→L+1 (3);	0.0519	
		H-4 \rightarrow L+1 (46); H-4 \rightarrow L+2 (5)	0.0318	

		H-14→L (3); H-9→L+1 (3); H-8→L+1 (3); H-8→L+2 (5);	
74	233.9 (5.30)	H-7→L+3 (17); H-6→L+3 (11); H-6→L+4 (14); H-4→L+5 (7);	0.0529
		H-3→L+5 (5); H-2→L+10 (2); H-1→L+11 (6)	
		H-13→L (4); H-13→L+1 (4); H-12→L+1 (5); H-11→L+1 (15);	
85	229.1 (5.41)	H-10→L+1 (2); H-10→L+2 (3);H-5→L+5 (26);	0.0505
		H-5→L+6 (3); H-4→L+6 (4);H-3→L+8 (3)	

Table S5. Calculated emission wavelength (λ), oscillator strength (f) and main configuration of complexes 1-3 along with their experimental values ($\lambda_{expt.}$).

Complex	λ (nm)	f	Main configurations	$\lambda_{\text{expt.}}$ (nm)
1	528	0.0005	HOMO→LUMO (99%)	493
2	537	0.0005	HOMO→LUMO (99%)	527
3	541	0.0141	HOMO→LUMO (99%)	533

Table S6. Calculated vertical excitation energies of singlet and triplet excited states as well as the energy gap of complexes **1-3** at the X-ray structure, the optimized S₀, S₁ and T₁ geometries.

Complex	Coometry	Excitation er	Excitation energies (eV)	
Complex	Geometry	\mathbf{S}_1	T_1	$\Delta E(S_1-T_1)$
1	X-ray	3.2061	3.1451	0.0610
	\mathbf{S}_{0}	3.1512	3.0904	0.0608
	S_1	2.3464	2.3042	0.0422
	T_1	2.2703	1.5333	0.7370
2	X-ray	3.4110	3.2762	0.1348
	S_0	3.2604	3.1660	0.0944
	\mathbf{S}_1	2.3093	2.2486	0.0607
	T_1	2.4119	2.2834	0.1285
3	X-ray	3.4024	3.2859	0.1165
	S_0	3.3046	3.1889	0.1157
	S_1	2.2929	2.2232	0.0697
	T_1	2.3870	2.2707	0.1163