Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Design and Properties of a New Family of Bridged Bis(nitraminotetrazoles)

as Promising Energetic Materials

Piao Hea*, Haozheng Mei^b, Junqing Yang^b and Jianguo Zhang^b

^a College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China

^b State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 P. R. China

Table of Contents

- 1. Selected optimized parameters
- 2. HOMO-LUMO and energy gap
- 3. Thermodynamic parameters
- 4. Calculations description
- 5. References

1. Selected optimized parameters

Figure S1 New bridged bis(nitraminotetrazoles)

^{*}Corresponding authors: Piao He, E-mail: piaohe@csu.edu.cn

Bond length/angle ^a	1	2	3	4	5	6	7	8
N1-N2	1.349	1.374	1.365	1.352	1.372	1.377	1.381	1.347
N2-N3	1.280	1.268	1.272	1.281	1.268	1.267	1.267	1.288
N3-N4	1.362	1.382	1.371	1.361	1.376	1.373	1.373	1.355
N1-N6	1.366	1.352	1.361	1.362	1.358	1.354	1.354	1.362
N6-N7	1.478	1.463	1.480	1.481	1.467	1.493	1.484	1.479
C5-N1	1.367	1.361	1.355	1.358	1.358	1.361	1.354	1.360
C5-N4	1.308	1.298	1.306	1.310	1.300	1.305	1.308	1.312
C5-R1	1.458	1.321	1.493	1.484	1.381	1.365	1.368	1.388
N1-N2-N3	106.6	106.0	105.8	106.4	106.3	105.6	105.6	106.0
N1-C5-N4	108.0	109.4	107.6	107.9	109.3	108.5	108.7	108.0
N1-N6-N7	113.2	114.9	113.4	113.1	114.1	113.5	113.7	113.2
N4-C5-R1	126.4	130.1	127.7	126.9	125.2	130.7	127.0	132.4
N1-N2-N3-N4	-0.2	0.5	-1.1	-0.1	0.4	0.7	-0.9	-1.3
N2-N1-N6-N7	83.2	74.5	-81.6	-82.4	78.8	76.2	-75.9	-81.5
N3-N4-C5-R1	177.9	-179.7	-178.9	-175.9	-177.0	-179.9	-176.7	178.76

Table S1 Selected optimized parameters of bridged bis(nitraminotetrazoles)

a Bond length (Å), Bond angle (°), Dihedral angle (°). R1denates the atom directly connected to C1 atom.

2. HOMO-LUMO and energy gap

Table S2 HOMO-LUMO and energy gap of bridged bis(nitraminotetrazoles) (eV)

Energy	LUMO	НОМО	$\Delta E_{LUMO-HOMO}$	
1	-4.85	-8.41	3.55	
2	-2.74	-8.46	5.72	
3	-3.10	-8.57	5.47	
4	-4.02	-8.93	4.91	
5	-3.11	-8.12	5.01	
6	-3.08	-7.96	4.88	
7	-2.83	-8.00	5.17	
8	-4.61	-8.34	3.73	

3. Thermodynamic parameters

 Table S3 Thermodynamic parameters of bridged bis(nitraminotetrazoles)

Energy	ZPE	U	Н	G	S	$C_{ m v}$
	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/mol)	(kcal/(mol·K))	(kcal/(mol·K))
1	88.84	100.60	101.19	56.24	150.76	66.79
2	111.13	123.16	123.76	77.45	155.32	66.86
3	87.55	97.37	97.96	57.93	134.29	55.07
4	75.34	85.53	86.12	45.51	136.24	56.98
5	96.36	107.99	108.58	64.15	149.01	65.82
6	80.28	90.00	90.59	51.31	131.77	55.09
7	90.84	101.41	102.01	60.11	140.52	59.65
8	75.05	85.23	85.82	44.96	137.04	56.83

4. Calculations description

Density and heat of formation (HOF) are important parameters of an energetic material. The density was predicted by using an improved equation proposed by Politzer¹ referring to intermolecular interactions within the crystal as follows:

$$\rho = \alpha \left(\frac{M}{V(0.001)} \right) + \beta \left(\upsilon \sigma_{Tot}^2 \right) + \gamma \tag{1}$$

Where *M* is molecular mass in g/molecule; V(0.001) is volume in cm³/molecule, which is average value of calculated molecular volumes by using a Monte Carlo integration embedded in Gaussian program²; The $v\sigma^2_{Tot}$ is derived from the molecular electrostatic potential calculation, which is performed by using the Multiwfn program³; α , β and γ are coefficients from the reference (0.9183, 0.0028, 0.0443).¹

The heat of formation was determined by deducting the enthalpy of sublimation either vaporization^{4, 5} based on the Hess' law⁶.

$$\Delta H(Solid) = \Delta H(Gas) - \Delta H(Sublimation)$$
(2)

$$\Delta H(Liquid) = \Delta H(Gas) - \Delta H(Vaporization)$$
(3)

$$\Delta H(Sublimation) = a(SA)^2 + b_{\sqrt{\sigma_{Tot}^2}}v + c$$
(4)

$$\Delta H(Vaporization) = a\sqrt{(SA)} + b\sqrt{\sigma_{Tot}^2 v} + c$$
(5)

Where (*SA*) is the molecular surface area for this structure, σ_{Tot}^2 is described as an indicator of the variability of the electrostatic potential on the molecular surface, and v is the degree of balance between the positive and negative potentials on the molecular surface. And where a, b, and c are fitting parameters (sublimation: 0.00042343, 2.5793785, -6.7335407; vaporization: 1.818689, 1.3321583, -16.14246).

And the heat of formation of gas-phase was calculated *via* atomization energies method⁷ as follows:

$$\Delta H_f(A_x B_y, 0K) = x \Delta H^0(A, 0K) + y \Delta H^0(B, 0K) - \sum D_0$$
(6)

Where ΔH^0 is the heat of formation of isolated atoms; D_0 is calculated atomization energies.

The detonation velocity and detonation pressure are the key parameters to assess the potential of an energetic material and were predicted by Empirical Kamlet-Jacobs equations⁸:

$$V_D = 1.01 \left(N \bar{M}^2 \bar{Q}^2 \right)^2 (1 + 1.30\rho)$$
(7)

$$P_D = 1.558\rho^2 N \bar{M}^2 \bar{Q}^2$$
(8)

Where V_D is detonation velocity (km/s); P_D is detonation pressure (GPa); N is moles of detonation gases per gram explosive; \overline{M} is average molecular weight of these gases; Q is heat of detonation (cal/g); and ρ is the theoretical density (g/cm³) here.

In order to investigate the sensitivity of explosives, the property-structure relation method "generalized interaction property function" (GIPF) was used to estimate the impact sensitivity $h_{50\%}$. Here we give four introduced methods summarized below⁹:

Method 1:
$$h_{50\%} = 9.2 + 8.03 \times 10^2 \times exp[iii] [-(0.0875 mol/kJ \times |V^+ - |V^-||)]$$
 (9)

Method 2:
$$h_{50\%} = 29.3 + 1.386 \times 10^{-3} \times exp^{[i0]} [48.84 \cdot v]$$
 (10)

Method 3:
$$h_{50\%} = 27.8 + 0.1135 \times exp[] - (2.6479 g/kJ \times [Q_d - 6.9496 kJ/g])]$$
 (11)

Method 4:
$$h_{50\%} = 1.341 \times exp^{[i0]} [8.1389 \cdot v - 1.6234 \, g/kJ \times (Q_d - 6.166 \, kJ/g)]$$
 (12)

 $|V^+ - |V^-||$ is the difference between magnitudes of average values of the positive and negative

electrostatic potential; v is balance parameter, and Q_d is heat of detonation.

5. References

- 1. P. Politzer, J. Martinez, J. S. Murray, M. C. Concha and A. Toro-Labbé, *Mol. Phys.*, 2009, 107, 2095-2101.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci and G. A. Petersson, *GAUSSIAN 09*, (2009) Gaussian, Inc., Wallingford CT.
- 3. T. Lu, Multiwfn, version 1.4: <u>http://multiwfn.codeplex.com/</u>.
- 4. J. S. Murray and P. Politzer, *Quantitative Treatment of Solute/Solvent Interactions, Theoretical and Computational Chemistry*, Elsevier Scientific, Amsterdam, 1994.
- 5. P. Politzer, J. S. Murray, T. Brinck and P. Lane, *Immunoanalysis of Agrochemicals*, ACS Symp. Ser. 586, American Chemical Society, Washington, DC, 1994.
- 6. P. W. Atkins, *Physical Chemistry*, Oxford University Press, Oxford, 1982.
- 7. L. A. Curtiss, K. Raghavachari, P. C. Redfern and J. A. Pople, J. Chem. Phys., 1997, 106, 1063-1066.
- 8. M. J. Kamlet and S. J. Jacobs, J. Chem. Phys., 1968, 48, 23-35.
- 9. B. M. Rice and J. J. Hare, J. Phys. Chem. A, 2002, 106, 1770-1783.