Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

A selective synthesis of glycerol carbonate from glycerol and urea over Sn(OH)₂:

a solid and recyclable in situ generate catalyst

DIEGO MORAIS CHAVES¹ AND MÁRCIO JOSÉ DA SILVA*1

¹Chemistry Department, Federal University of Viçosa, Viçosa, Minas Gerais State,

Brazil, zip code: 36570-000

*silvamj2003@ufv.br

Supporting Information

Figure Legends

Fig. SM 1 Chromatogram of an aliquot from urea glycerolizes reaction, diluted in methanol.

Fig. SM 2 Thermal analyses curves of synthesized and recovered Sn(OH)₂

Fig. SM 3 Chromatogram and mass spectra of carbamates detected by GC-MS

Fig. SM 4 Composition of urea and glycerol in the vapor and liquid phase in urea glycerolizes reaction.

Fig SM5 Powders XRD diffraction of SnCl₂ and Sn(OH)₂ catalyst

Tables

Table SM1. Structural properties of synthesized and recovered Sn(OH)₂

Fig. SM 1 Chromatogram of an aliquot from urea glycerolizes reaction, diluted in methanol.

Fig. SM 2. Thermogravimetric curves of synthesized and recovered Sn(OH)₂

Fig. SM 3 Chromatogram and mass spectra of carbamates detected by GC-MS.

Fig. SM 4 Composition of urea and glycerol in the vapor and liquid phase in urea glycerolizes reaction.

Fig SM5 Powders XRD diffraction of SnCl₂ and Sn(OH)₂ catalyst

Samples	Surface area (m ² /g)	Pore volume (cm ³ /g)	Pore size (nm)
	BJH method		DFT method
Sn(OH) ₂	18 36	0.10	3 90
(recovery)	16.50	0.10	5.90
Sn(OH) ₂	16.40	0.03	1 39
(synthesized)	10.40	0.03	1.57

Table SM1 Structural properties of $Sn(OH)_2$ synthesized and recovered.