Supporting Information

A zinc(II)-organic framework as multi-responsive photoluminescence sensor for efficient and recyclable detection of pesticide 2,6-dichloro-4-nitroaniline, Fe(III) and Cr(VI)

Xiao-Yu Guo, Zhen-Peng Dong, Fei Zhao, Zhi-Liang Liu and Yan-Qin Wang*

Zn-MOF-1	
Formula	$C_{26}H_{18}ZnN_7O_3$
Mr	541.86
Crystal system	Triclinic
space group	Pī
<i>a</i> , Å	9.1505(10)
b, Å	10.4512(11)
<i>c</i> , Å	13.869(2)
α, deg	108.994(13)
β , deg	101.343(12)
γ, deg	97.790(9)
<i>V</i> , Å ³	1200.8(3)
Ζ	2
$D_{\rm c}$, g cm ⁻³	1.499
μ , mm ⁻¹	1.793
Unique.reflns	4297
$R_1[I \ge 2\sigma(I)]$	0.0922
w R_2 (All data)	0.2778
GOF	1.118

Table S1. Crystallographic data and structure refinements for Zn-MOF-1

beleetted solid lengths (l	<u>i) unu ungios () i</u> or i
Zn1-O2	1.935(6)
Zn1-N7A	2.027(8)
Zn1-N1	2.032(7)
Zn1-N3B	2.056(7)
O2-Zn1-N7A	115.0(3)
O2-Zn1-N1	114.7(3)
N7A-Zn1-N1	102.9(3)
O2-Zn1-N3B	114.0(3)
N7A-Zn1-N3B	94.6(3)
N1-Zn1-N3B	113.5(3)

Table S2. The selected bond lengths (Å) and angles (°) for Zn-MOF-1.

Symmetry transformations used to generate equivalent atoms: A: x+1,y+1,z+1; B x+1,y+1,z.

Fig. S1 The TGA curve for Zn-MOF-1.

Fig. S2. PXRD patterns for Zn-MOF-1.

Fig. S3 The solid-state excitation ($\lambda_{em} = 517$ nm) and emission spectra ($\lambda_{ex} = 351$ nm) of free L ligands at room temperature.

Fig. S4 The solid-state excitation ($\lambda_{em} = 385 \text{ nm}$) and emission spectra ($\lambda_{ex} = 326 \text{ nm}$) of free TPA ligands at room temperature.

Fig. S5 The solid-state excitation ($\lambda_{em} = 432 \text{ nm}$) and emission spectra ($\lambda_{ex} = 373 \text{ nm}$) of Zn-MOF-1 at room temperature.

Fig. S6. The PXRD patterns of Zn-MOF-1 in different solvents, with the simulated Zn-MOF-1 single crystal data result as reference.

Fig. S7. PXRD patterns of Zn-MOF-1 in different organochlorine pesticides.

Zn-MOF-1 for Fe^{3+} ions.						
MOF-based fluorescent	analyte	detection	quenching	recyclability	solvent	Ref
materials		limits	constant			
Zn-MOF-1	Fe ³⁺	3.84 µM	$6.4 imes 10^3$	YES	Water	This work
{(Me ₂ NH ₂)[Tb(OBA) ₂]·(Hatz	Fe ³⁺	1.0 µM	$3.4 imes 10^4$	NO	Water	1
$) \cdot (H_2O)_{1.5} \}_n$						
$[Eu(HL)_{1.5}(H_2O)(DMF)]\cdot 2H_2$	Fe ³⁺	1.03	1×10^4	YES	Water	2
0						
[ZnL]·2H ₂ O	Fe ³⁺	0.92 µM	$4.67 imes 10^4$	YES	Water	3
$\{[Cd(5-asba)(bimb)]\}_n$	Fe ³⁺		$1.78 imes 10^4$	NO	Water	4
$[Eu(HL)(H_2O)_3]_n$	Fe ³⁺	1.16×10 ⁻³ M	$5.3 imes 10^3$	NO	Water	5
CDs@UiO-66(OH) ₂	Fe ³⁺	0.76 μM	4.58×10^4	NO	Water	6
FJI-C8	Fe ³⁺	0.0233 mM	8245	NO	DMF	7
Al-MIL-53-N ₃	Fe ³⁺	0.03 µM	6.13× 10 ³	YES	Water	8
$[Zn(L)(bpdc)] \cdot 1.6H_2O$	Fe ³⁺	152 ppb	1.73×10 ⁴	NO	Water	9
Pb ₃ O ₂ L	Fe ³⁺	7.85 μM	7.8× 10 ³	YES	Water	10

Table S3. Sensing performance comparison between other MOF-based fluorescent sensors with

 $H_2OBA = 4,4'$ -oxybis(benzoic acid) (H_2oba), Hatz = 3-amino-1,2,4-triazole¹; HL = 5-(3',5'-dicarboxylphenyl) nicotinic acid²; L²⁻ = pphenylenebis(1-[3,5-dicarboxylatophenyl]methyl]pyrid-4-yl)³; H₂5-asba = 2-amino-5sulfobenzoic acid, [bimb = 1,4-bis(1H-imidazol-1-yl)butane]⁴; H₄L = 1-(3,5-dicarboxylatobenzyl)-3,5-pyrazole dicarboxylic acid⁵; CDs = carbon dots⁶; H₆TDPAT = (2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine)⁷; L = 1,4-di(1H-imidazol-4-yl)benzene, H₂bpdc = 4,4'-benzophenonedicarboxylic acid⁹; H₂L = 4-(1H-tetrazol-5yl)phenol)¹⁰.

- 1. D. M. Chen, N. N. Zhang, C. S. Liu and M. Du, J. Mater. Chem. C, 2017, 5, 2311.
- 2. F. Zhao, X. Y. Guo, Z. P. Dong, Z. L. Liu and Y. Q. Wang, Dalton Trans., 2018, 47, 8972.
- 3. P. Li, L. J. Zhou, N. N. Yang, Q. Sui, T. Gong and E. Q. Gao, *Cryst. Growth Des.* 2018, 18, 7191.
- 4.Y. J. Yang, M. Jie and K. L. Zhang, J. Mater. Chem. C, 2016, 4, 11404.
- 5. W. Q. Tong, T. T. Liu, G. P. Li, J. Y. Liang, L. Hou and Y. Y. Wang, *New J. Chem.*, 2018, **42**, 9221.
- 6. C. X. Yao, Y. Xu and Z. G. Xia, J. Mater. Chem. C, 2018, 6, 4396.
- 7.C. H. Chen, X. S. Wang, L. Li, Y. B. Huang and R. Cao, Dalton Trans., 2018, 47, 3452.
- 8. A. Das, S. Banesh, V. Trived and S. Biswas, Dalton Trans., 2018, 47, 2690.
- 9. Z. Q. Liu, Y. Zhao, X. D. Zhang, Y. S. Kang, Q. Y. Liu, M. Azam, S. I. Al-Resayes and W. Y. Sun, *Dalton Trans.*, 2017, 46, 13943.
- 10. X. Luo, X. Zhang, Y. L. Duan, X. L. Wang and J. M. Zhao, Dalton Trans., 2017, 46, 6303.

Fig. S8. PXRD patterns of Zn-MOF-1 after Fe³⁺, CrO_4^{2-} and $Cr_2O_7^{2-}$ sensing process, with the simulated Zn-MOF-1 single crystal data result as reference.

Table S4. Sensing performance comparison between other MOF-based fluorescent sensors with
Zn-MOF-1 for Cr(VI) ions

MOF-based fluorescent	analyte	detection	quenching	recyclability	solvent	Ref
materials		limits	constant			
Zn-MOF-1	CrO42-	2.10 µM	$1.3 imes 10^4$	YES	Water	This
	$Cr_2O_7^{2-}$	3.80 µM	6.05× 10 ³			work
$[Zn_2(TPOM)(BDC)_2] \cdot 4H_2$	CrO42-	4.8 µM	4.45×10 ³	YES	DMF	1
0	$Cr_2O_7^{2-}$	3.9 µM	7.59×10 ³			
$[Zn(L)(BBI) \cdot (H_2O)_2]$	$Cr_2O_7^{2-}$	_		YES	Water	2
Eu_4L_3	$Cr_2O_7^{2-}$	10 µM	1.526×10 ³	YES	DMF	3
[Cd(TPTZ)(H ₂ O) ₂ (HCOOH)	$Cr_{2}O_{7}^{2-}$	_		NO	Water	4
$(IPA)_2]_n$						
[Cd ₆ (L) ₂ (bib) ₂ (DMA) ₄]	CrO42-	_		NO	Water	5
$[Zn(2-NH_2bdc)(bibp)]_n$	$Cr_{2}O_{7}^{2-}$	_		NO	Water	6
1-Eu	$Cr_{2}O_{7}^{2-}$	22 µM		NO	Ethanol	7
$[Zn_2(tpeb)_2(2,3-ndc)_2] \cdot H_2O_{n}$	CrO42-	1.734 ppb		YES	Water	8
	$Cr_{2}O_{7}^{2-}$	2.623 ppb				
$[EuL(H_2O)_3]{\cdot} 3H_2O{\cdot}$	$Cr_{2}O_{7}^{2-}$	-		YES	DMF	9
0.75DMF						
$[Eu_2(tpbpc)_4{\cdot}CO_3{\cdot}H_2O]{\cdot}$	CrO42-	0.33 ppm	4.85×10 ³	YES	Water	10
DMF·solvent	$Cr_2O_7^{2-}$	1.07 ppm	1.04×10^{4}			
[Tb(TATAB)(H ₂ O) ₂]·NMP·	$Cr_{2}O_{7}^{2-}$	1 µM	1.11×10^{4}	NO	Water	11
H_2O_n						
Eu ³⁺ @MIL-121	$Cr_2O_7^{2-}$	$0.054 \mu\mathrm{M}$	4.34×10 ³	NO	Water	12
[Zn(btz)] _n	CrO42-	10 µM	3.19×10 ³	YES	Water	13
	Cr ₂ O ₇ ²⁻	20 µM	4.23×10 ³			

$[Zn_2(ttz)H_2O]_n$	CrO42-	2 µM	2.35×10 ³	YES	Water	13
	$Cr_2O_7^{2-}$	$20 \mu M$	2.19×10 ³			
[Zn _{2.5} (cpbda)(OH) ₂]·DMF	CrO42-	_		NO	Water	14
	$Cr_2O_7^{2-}$					
$\{[Cu(butylmalonate)_2(H_2O)]$	$Cr_2O_7^{2-}$	-		NO	Water	15
$(2-APH)_2 \cdot H_2O$						
$[Eu_7(mtb)_5(H_2O)_{16}] \cdot NO_3$	CrO42-	0.56 ppb	_	NO	deionized	16
$\cdot 8DMA \cdot 18H_2O$					water	

TPOM= tetrakis(4-pyridyloxymethylene)methane, BDC= 2-aminoterephthalic acid;¹ L=benzo-(1,2;4,5)bis(thiophene-2'-carboxylic acid, BBI=1,1'-(1,4-butanediyl)bis(imidazole;² L= 5.5'-(carbonylbis(azanediyl))diisophthalic acid;³ TPTZ =4-[4-(1H-1,2,4-triazol-1-yl)phenyl]phenyl]-1H-1,2,4-triazole, IPA=isophthalic acid; 4 L= 4-(carboxyphenyl)oxamethyl]-3-oxapentane acid, bib = 4,4'-di(1H-imidazol-1-yl)-1,1'biphenyl, tib= 1,3,5-tri(1H-imidazol-1-yl)benzene;⁵ bibp = 4,4'-bis(imidazol-1-ylmethyl)-biphenyl;⁶ 1= 3-(1Hpyrazol-3-yl) benzoic acid;⁷ tpeb = 1,3,5-tri-4-pyridyl-1,2-ethenylbenzene, 2,3-ndc = 2,3-naphthalenedicarboxylic acid;⁸ L = biphenyl-3'-nitro-3,4',5-tricarboxylic acid;⁹ tpbpc =4'-[4,2';6',4'']-terpyridin-4'-yl-biphenyl -4-carboxylic acid;¹⁰ TATAB = 4,4',4"-s-triazine-1,3,5-triyltri-m-aminobenzoic acid, NMP = N-methyl-2-pyrrolidone;¹¹ btz =1,5-bis(5-tetrazolo)-3-oxapentane, ttz= 1,2,3-tris-[2-(5-tetrazolo)-ethoxy] propane;¹³ cpbda =3,5-bis(4carboxyphenoxy)benzoic acid;¹⁴ 2-APH= protonated 2-aminopyridine;¹⁵ 4mtb = 4-[tris(4-carboxyphenyl) methyl]benzoic acid.16

1. Lv, R.; Wang, J.; Zhang, Y.; Li, H.; Yang, L.; Liao, S.; Gu, W.; Liu, X., An amino-decorated dual-functional metal–organic framework for highly selective sensing of Cr(iii) and Cr(vi) ions and detection of nitroaromatic explosives. *J. Mater. Chem. A* 2016, **4** (40), 15494-15500.

2. Zhao, Y.; Xu, X.; Qiu, L.; Kang, X.; Wen, L.; Zhang, B., Metal-Organic Frameworks Constructed from a New Thiophene-Functionalized Dicarboxylate: Luminescence Sensing and Pesticide Removal. *ACS applied materials & interfaces* 2017, **9** (17), 15164-15175.

3. Liu, W.; Huang, X.; Xu, C.; Chen, C.; Yang, L.; Dou, W.; Chen, W.; Yang, H.; Liu, W., A Multi-responsive Regenerable Europium-Organic Framework Luminescent Sensor for Fe³⁺, CrVI Anions, and Picric Acid. *Chemistry* 2016, **22** (52), 18769-18776.

Wang, Y.; Cheng, L.; Liu, Z. Y.; Wang, X. G.; Ding, B.; Yin, L.; Zhou, B. B.; Li, M. S.; Wang, J. X.; Zhao, X. J., An Ideal Detector Composed of Two-Dimensional Cd(II)-Triazole Frameworks for Nitro-Compound Explosives and Potassium Dichromate. *Chemistry* 2015, 21 (40), 14171-8.

5. Yi, F. Y.; Li, J. P.; Wu, D.; Sun, Z. M., A Series of Multifunctional Metal-Organic Frameworks Showing Excellent Luminescent Sensing, Sensitization, and Adsorbent Abilities. *Chemistry* 2015, **21** (32), 11475-82.

6. Wen, L.; Zheng, X.; Lv, K.; Wang, C.; Xu, X., Two Amino-Decorated Metal-Organic Frameworks for Highly Selective and Quantitatively Sensing of Hg(II) and Cr(VI) in Aqueous Solution. *Inorg. Chem.* 2015, **54** (15), 7133-5.

 Li, G. P.; Liu, G.; Li, Y. Z.; Hou, L.; Wang, Y. Y.; Zhu, Z., Uncommon Pyrazoyl-Carboxyl Bifunctional Ligand-Based Microporous Lanthanide Systems: Sorption and Luminescent Sensing Properties. *Inorg. Chem.* 2016, 55 (8), 3952-9.

8. Gu, T. Y.; Dai, M.; Young, D. J.; Ren, Z. G.; Lang, J. P., Luminescent Zn(II) Coordination Polymers for Highly Selective Sensing of Cr(III) and Cr(VI) in Water. *Inorg. Chem.* 2017, **56** (8), 4669-4679.

9. Gao, R. C.; Guo, F. S.; Bai, N. N.; Wu, Y. L.; Yang, F.; Liang, J. Y.; Li, Z. J.; Wang, Y. Y., Two 3D Isostructural Ln(III)-MOFs: Displaying the Slow Magnetic Relaxation and Luminescence Properties in Detection

of Nitrobenzene and Cr2O72. Inorg. Chem. 2016, 55 (21), 11323-11330.

10. Liu, J.; Ji, G.; Xiao, J.; Liu, Z., Ultrastable 1D Europium Complex for Simultaneous and Quantitative Sensing of Cr(III) and Cr(VI) Ions in Aqueous Solution with High Selectivity and Sensitivity. *Inorg. Chem.* 2017, **56** (7), 4197-4205.

11. Wen, G. X.; Han, M. L.; Wu, X. Q.; Wu, Y. P.; Dong, W. W.; Zhao, J.; Li, D. S.; Ma, L. F., A multi-responsive luminescent sensor based on a super-stable sandwich-type terbium(iii)-organic framework. *Dalton transactions* 2016, **45** (39), 15492-15499.

12. Hao, J.-N.; Yan, B., Ln3+post-functionalized metal–organic frameworks for color tunable emission and highly sensitive sensing of toxic anions and small molecules. *New J. Chem.* 2016, **40** (5), 4654-4661.

13. Cao, C.-S.; Hu, H.-C.; Xu, H.; Qiao, W.-Z.; Zhao, B., Two solvent-stable MOFs as a recyclable luminescent probe for detecting dichromate or chromate anions. *CrystEngComm* 2016, **18** (23), 4445-4451.

14. Huang, W.-H.; Li, J.-Z.; Liu, T.; Gao, L.-S.; Jiang, M.; Zhang, Y.-N.; Wang, Y.-Y., A stable 3D porous coordination polymer as multi-chemosensor to Cr(iv) anion and Fe(iii) cation and its selective adsorption of malachite green oxalate dye. *RSC Adv.* 2015, **5** (118), 97127-97132.

15. Mondal, R. K.; Dhibar, S.; Mukherjee, P.; Chattopadhyay, A. P.; Saha, R.; Dey, B., Selective picomolar level fluorometric sensing of the Cr(vi)-oxoanion in a water medium by a novel metal–organic complex. *RSC Adv.* 2016, **6** (66), 61966-61973.

16. Liu, W.; Wang, Y.; Bai, Z.; Li, Y.; Wang, Y.; Chen, L.; Xu, L.; Diwu, J.; Chai, Z.; Wang, S., Hydrolytically Stable Luminescent Cationic Metal Organic Framework for Highly Sensitive and Selective Sensing of Chromate Anions in Natural Water Systems. *ACS applied materials & interfaces* 2017, **9** (19), 16448-16457.

Fig. S9. The UV-Vis absorption spectrum of selected 0.001 M different M^{z+} (Hg²⁺, Cu²⁺, Zn²⁺, Ba²⁺, Al³⁺, Pb²⁺, Mg²⁺, Co²⁺, Ni²⁺, Cd²⁺, Ca²⁺, Mn²⁺, Ag⁺, Cr³⁺, Fe²⁺ and Fe³⁺) ions aqueous solution.

Fig. S10. IR characterization of as-synthesized Zn-MOF-1, Zn-MOF-1 treated by Fe³⁺ ions.

Fig. S11. The UV-Vis absorption spectrum of selected 10^{-4} M different anions (SO₄²⁻, PO₄³⁻, Br⁻, OAc⁻, SCN⁻, Cl⁻, NO₃⁻, CO₃²⁻, N₃⁻, I⁻, CrO₄²⁻ and Cr₂O₇²⁻) ions aqueous solution.