Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supporting Information

Ellagic Acid micro and nano formulations with amazingly increased water

solubility by its entrapment in pectin or non-PAMAM dendrimers eligible for

clinical applications

Silvana Alfei,* Federica Turrini, Silvia Catena, Paola Zunin, Brunella Parodi, Guendalina

Zuccari, Anna Maria Pittaluga and Raffaella Boggia

Department of Pharmacy, University of Genoa. Viale Cembrano, 4 I-16148 GENOA, ITALY

Correspondence Author: Prof. Silvana Alfei Department of Pharmacy, University of Genoa Phone number: +39-010-3532296 Fax number: +39-010-3532684 Email: <u>alfei@difar.unige.it</u> ORCID: 0000-0002-4630-4371

Table of Contents.

Section S1 FTIR, ¹H NMR and ¹³C NMR of Ellagic Acid 1 and FTIR of LM pectin.

Fig. S1 FTIR spectrum of 1.

Fig. S2 ¹H NMR spectrum of 1.

Fig. S3 ¹³C NMR spectrum of 1.

Fig. S4 FTIR spectrum of LM pectin.

Section S2 Data about dendrimers 2 and 3

AD S1 Characterization data of dendrimers 2 and 3.[1,2]

Table S1 Cytotoxicity essay results.

Fig. S5 Comparison between cytotoxicity data of dendrimers **2** and **3** and *b*-PEI taken as reference **Section S3** FTIR and ¹H NMR spectra of microsphere.

Fig. S6 FTIR spectrum of microspheres with in evidence the signals derived from 1 compared to FTIR of EA and LM pectin.

Fig. S7¹H NMR spectrum of soluble fraction of microsphere.

Section S4 Physicochemical and spectroscopic data and FTIR spectra of DPXs 4 and 5 with in evidence the signals derived from 1 compared to FTIR of EA and parent dendrimers 2 and 3.

AD S2 Physicochemical and spectroscopic data of DPXs 4 and 5

Fig. S8 Compound 4.

Fig. S9 Compound 5.

Section S5 Further characterizations of formulations.

Fig. S10 Image from Optical Microscopy Analysis.

Fig. S11 Dynamic Light Scattering Analysis of 4.

Fig. S12 Dynamic Light Scattering Analysis of 5.

Fig. S13 Solubility of prepared DPXs in biocompatible solvents (water and ethanol) compared to solubility of free EA 1.

Fig. S14 Potentiometric titration curves of prepared DPXs and of three G4-PAMAM derivatives.

Fig. **S15** Buffer Capacity of prepared DPXs, parent dendrimers **2**, **3** and of three G4-PAMAMs taken as reference.

Fig. **S16** Histogram of average buffer capacity of prepared DPXs and of three G4-PAMAM derivatives (pH = 4.5-7.5).

Fig. S17 RSA (%) curves recorded at different EA, EAMS and DPXs concentrations in methanol or water solution with the corresponding exponential tendency curves and related equations used to derive the IC_{50} and IC_{90} values.

Table S2 Comparison between some properties of achieved EA-loaded formulations and literature data about already reported EA formulations.

Section S1 FTIR, ¹H NMR and ¹³C NMR of Ellagic Acid 1 and FTIR of pectin.

Figure S2. ¹H NMR (DMSO-*d*₆, 300 MHz) of EA (1)

Figure S3. ¹³C NMR (DMSO-*d*₆, 75.5 MHz) of EA (1)

Figure S4. FTIR of LM pectin

Section S2 Data about dendrimers 2 and 3

AD S1 Characterization data of dendrimers 2 and 3.[1,2]

Dendrimer 2 (79 HCI).^[1] Slightly Hygroscopic, off white spongy solid (250.7 mg, 0.01798 mmol, 92.1 % overall yield).

¹H NMR (300 MHz, DMSO-*d*₆, 25° C, TMS): δ = 1.00-2.00 [more broad signals, 298H, (138H, C*H*₃ G4 + 96H, C*H*₂C*H*₂C*H*₂ Lys + 64H, C*H*₂C*H*₂ Arg)], 2.76 (m, 32H, C*H*₂[¢]NH₃⁺ Lys), 3.10-3.30 (m, 32H, C*H*₂^δNH Arg), 3.47 (br s, 24H, C*H*₃NH₂⁺ sarcosine), 3.50 (br s, 2H, C*H*₂OH), 3.76 (s, 42H, (C*H*₃)₂NH⁺ DMG), 4.01 (m, 32H, C*H*NH₃⁺ Arg + Lys), 4.10-4.50 [m, 215H (14H, C*H*₂NH⁺ DMG + 16H, C*H*₂NN₂⁺ sarcosine + 184H, C*H*₂O G4 + 1H, O*H*)], 8.08, 8.23, 8.81 [three broad signals, 247H (48H, *NH*₃⁺Arg + 32H, ^ω*NH*₂⁺ Arg + 32H, ^ω*NH*₂ Arg + 16H ^δ*NH* Arg + 48H, ^α*NH*₃⁺ Lys + 48H [¢]*NH*₃⁺ Lys + 7H, NH⁺ DMG + 16H, *NH*₂⁺ sarcosine)]. FTIR (KBr, cm⁻¹): 3431 (NH₃⁺ + OH), 2934, 1741 (C=O esters), 1630 (NH); elemental analysis calcd (%) for C₄₇₄H₉₂₄N₁₁₁Cl₇₉O₁₈₅: C, 40.84; H, 6.68; Cl, 20.09; N, 11.15%. Found: C, 41.20; H 6.86; Cl, 20.08; N, 10.96.

Dendrimer 3 (37HCI). ^[2] Hygroscopic, pale yellow glassy solid (372.6 mg, 0.054 mmol, 88.8%, overall yield: 70.1%).

¹H NMR (300 MHz, DMSO-*d*₆, 25° C, TMS): $\delta = 0.85$ (t, 3H, J = 7.0 Hz, CH_3 stearate), 1.00, 1.03, 1.08 and 1.10 (four signals, 63H, CH_3 D1, D2, D3), 1.26 (s, 28H, CH_2 stearate), 1.00-2.00 [m, 72H (28H, CH_2CH_2 Arg + 42H, $CH_2CH_2CH_2$ Lys + 2H, one CH_2 stearate)], 2.30 (s, 2H, $CH_2C=O$ stearate), 2.76 (m, 14H, $CH_2^{e}NH_3^{+}$ Lys), 3.10-3.30 (very broad signal, 14H, $CH_2^{\delta}NH$ Arg), 3.52 (br s, 2H, CH_2OH), 3.75 [s, 42H, (30H, $CH_3NH^+CH_3$ DMG + 12 H, $CH_3NN_2^{+}$ sarcosine)], 4.00 (m, 14H, $CH_2NH_3^{+}$ Arg + Lys), 4.10-4.50 [m, 108H (10H, CH_2NH^{+} DMG + 8H, $CH_2NN_2^{+}$ sarcosine + 90H, CH_2O D1, D2, D3 + CH_2O core)], 8.08, 8.21, 8.76 [three broad signals, 111H (21H, $NH_3^{+}Arg$ + 14H, ${}^{\omega}NH_2^{+}$ Arg + 14H, ${}^{\omega}NH_2$ Arg + 7H ${}^{\delta}NH$ Arg + 21H, ${}^{\alpha}NH_3^{+}$ Lys + 21H ${}^{e}NH_3^{+}$ Lys + 5H, NH⁺ DMG + 8H, NH_2^{+} sarcosine)], 1H, OH, not detected. FTIR (KBr, cm⁻¹): 3600-2400 (NH_3^{+} + OH), 1742 (C=O esters), 1626 (NH).

References

- S. Alfei, S. Catena. Synthesis and characterization of fourth generation polyester-based dendrimers with cationic amino acids-modified crown as promising water soluble biomedical devices. Polym. Adv. Technol. 2018, 29, 2735-2749.
- [2] S. Alfei, S. Catena. Synthesis and characterization of versatile amphiphilic dendrimers peripherally decorated with positive charged amino acids, Polym. Int. **2018**, *67*, 1572-1584.

Table S1Cell viability values for dendrimers 2 and 3

		Cell viability (%)		
Cpd	µg/mL	B14	BRL	
2	20.7	69.9±3.1	84.2±1.7	
3	11.2	109.2±8.4	105.8±3.3	

Figure S5. Comparison between cytotoxicity data of dendrimers 2 and 3 and b-PEI taken as reference

Section S3 FTIR and ¹H NMR spectra of microspheres (EAMSs).

Figure S6. FTIR spectrum of EAMSs (bottom panel) with in evidence the signals derived from **1** compared to FTIR of EA (top panel) and LM pectin (middle panel). FTIR spectrum of EAMSs was very similar to pectin one but more articulated in the area between 1050 and 1500 cm⁻¹ and below 1000 cm⁻¹. Then the bands around 1700 and 1600 cm⁻¹ appeared much more intense thanks to the contribution of EA in the microspheres.

Figure S7. ¹H NMR spectrum of EAMSs (soluble fraction): the peak at 7.53 ppm relative to the only nonexchangeable aromatic protons of EA, further confirmed that it had been successfully loaded into pectin matrix

Section S4 Physicochemical and spectroscopic data and FTIR spectra of DPXs 4 and 5 with in evidence the signals derived from 1 compared to FTIR of EA and parent dendrimers 2 and 3.

AD S2.

For a better understanding of the name attributed to each DPX, it should be noted that the amino acid composition has been indicated using the common three letter acronyms whenever possible (Arg = arginine, Lys = Lysine). DMG stands for dimethylglycine, MG for methylglycine, OH stands for eventually present hydroxyl group and **1** for EA. The numbers in parentheses indicate the number of units of that residual.

DPX 4: [Arg(16)Lys(16)DMG(7)MG(8)OH(1)1(39)]

Slightly hygroscopic orange amorphous solid [38.6 equiv. of **1** per dendrimer mole (73.3 mg, 0.00286 mmol, yield: 99.9%). ¹H NMR (300 MHz, DMSO-*d*₆, 25° C, TMS): δ = 1.00-2.00 [more broad signals, 298H, (138H, CH₃ G4 + 96H, CH₂CH₂CH₂ Lys + 64H, CH₂CH₂ Arg)], 2.76 (m, 32H, CH₂^eNH₃⁺ Lys), 3.19 (br m, 32H, CH₂⁵NH Arg), 3.47 (s, 24H, CH₃NH₂⁺ sarcosine), 3.50 (m, 2H, CH₂OH), 3.58 (s, 42H, (CH₃)₂NH⁺ DMG), 3.80-4.40 [very broad signals, 247H (32H, CHNH₃⁺ Arg + Lys + 14H, CH₂NH⁺ DMG + 16H, CH₂NN₂⁺ sarcosine + 184H, CH₂O G4 + 1H, OH)], 7.51, 7.54, 7.55, 7.60, 7.63 and 7.69 (more s signals, 78H, CH= aromatics of EA), 8.00-9.00 (very small signals of H atoms linked to N atoms of parent dendrimer **2**. FTIR (KBr): 3406 (OH and NH), 1736 (C=O ester), 1624 (NH and EA band), 1582, 1449, 1376, 1328, 1260, 1192, 1107, 1040, 755, 603, 574 (bands mainly derived from EA).

DPX 5:[Arg(7)Lys(7)DMG(5)MG(4)OH(1)1(25)]

No hygroscopic yellowish amorphous solid [24.9 equiv. of **1** per dendrimer mole (87.6 mg, 0.0061 mmol, yield: 99.9%). ¹H NMR (300 MHz, DMSO- d_6 , 25° C, TMS): δ = 0.85 (very small signals, m, 3H, CH₃ stearate), 1.00-2.00

[more signals, 163H (63H, CH₃ D1, D2, D3 + 30H, CH₂ stearate + 28H, CH₂CH₂ Arg + 42H, CH₂CH₂CH₂ Lys)], 2.30 (s, 2H, CH₂C=O stearate), 2.70-3.00 (m, 14H, CH₂ $^{\epsilon}$ NH₃ $^{+}$ Lys), 3.19 (12 H, CH₃NN₂ $^{+}$ sarcosine), 3.30 (m, 14H, CH₂ 5 NH Arg), 3.48 [two overlapped signals, 32H (2H, CH₂OH + 30H, CH₃NH⁺CH₃ DMG)], 3.90-5.00 [very broad signal, H (14H, CHNH₃ $^{+}$ Arg and Lys + 10H, CH₂NH⁺ DMG + 8H, CH₂NN₂ $^{+}$ sarcosine + 90H, CH₂O dendrimer scaffold)], 5.22 (s, 1H, OH), 7.48, 7.51, 7.54 (three s signals, 50H, CH= aromatics of EA), 8.00-9.00 (very small signals of H atoms linked to N atoms of parent dendrimer **3**), 10.71 (very small br s of OH of EA). FTIR (KBr): 3411, 3336 (OH and NH), 1734 (C=O ester), 1627 (NH and EA band), 1579, 1508, 1449, 1400, 1376, 1125, 1045, 917, 892, 815, 755, 641 (bands derived from EA).

FTIR spectra of DPXs 4 and 5: Together with bands belonging to dendrimers [2929 (2), 2851 and 2929 (3) cm⁻¹ (methyl and methylene groups) and 1736 (2), 1734 (3) cm⁻¹ (C=O esters)] several bands belonging to EA were detectable.

Figure S8. FTIR spectra of DPX 4 (bottom panel) with in evidence the signals derived from 1 compared to FTIR of EA (middle panel) and parent dendrimer 2 (top panel).

Figure S9. FTIR spectra of DPX **5** (top panel) with in evidence the signals derived from **1** compared to FTIR of EA (middle panel) and parent dendrimer **3** (bottom panel).

Section S5 Further characterizations of formulations.

Figure S10. EAMSs images from Optical Microscopy Analysis.

Figure S11. Dynamic Light Scattering Analysis of 4.

Figure S12. Dynamic Light Scattering Analysis of 5.

Figure S13. Solubility of DPXs 4 and 5 in biocompatible solvents (EtOH and water) compared to solubility of free EA 1.^[1]

Reference.

[1] I. Bala, V. Bhardwaj, S. Hariharan, M. N. V. R. Kumar, J. Pharm. Biomed. Anal. 2006, 40, 206–210.

Figure S14. Potentiometric titration of DPXs 4 and 5 and of three G4-PAMAMs taken as reference

Figure S15. Buffer Capacity of DPXs 4 and 5, parent dendrimers 2 and 3 and of three G4-PAMAMs taken as reference

Figure S16. Average Buffer Capacity* of DPXs **4** and **5** and of three G4-PAMAMs taken as reference (pH range = 4.5-7.5)

*calculated for three degrees of freedom

Figure S17. RSA (%) curves recorded at different EA, EAMS (MC) and DPXs concentrations in methanol or water solution with the corresponding exponential tendency curves and related equations used to derive the IC_{50} and IC_{90} values are available.

Table S2

Companson betwee	п шаш рюр	erties of achieved LA-10a	aueu iuimulaliuns anu avaliable illeralure uali	a about LA formulation pr	eviously achieved.
EA Formulation	DL‡	Solubility	In vitro antioxidant activity (RSA%)	Mean particle size	Average Buffer
	(%w/w)	mg/mL	IC ₅₀ (μg/mL)		capacity
			IC90 (µg/mL)		
EAMSs	22	0.3 (Water)	10	Max 20 µm¶	Not evaluated
			81		
DPX 4	46	9 (water)	18	62.6±2.0 nm ^a	0.100
			134		
DPX 5	53	3.2 (water)	18	69.2±0.9 nmª	0.127
		15 (ethanol)	164		
EA/PLGA ^[1]	52-62§	Not evaluated	Not evaluated	125-293 nm ^{§,a}	Not evaluated
EA/PCL ^[1]	47-57§	Not evaluated	Not evaluated	128-281 nm ^{§,a}	Not evaluated
EA/PLGA ^[2]	42-67§	Not evaluated	Not evaluated	149-618 nm ^{§,a}	Not evaluated
EA/PL ^{†,[3]}	96	0.029 (water)	Not evaluated	Not evaluated	Not evaluated
		0.988 (<i>n</i> -octanol)			
EA/liposome ^[4]		Not evaluated	Not evaluated	387 nm§	Not evaluated
EA/SLNs ^[5]	89	Not evaluated	Not evaluated	96 nm [§]	Not evaluated
EA/β-CD ^{b, [6]}		0.039 (water)	Not evaluated	10-100 µm°	Not evaluated

Comparison between main properties of achieved EA-loaded formulations and available literature data about EA formulation previously achieved.

[†]PL=phospholipids; [‡]DL = Drug Loading; [§]a range was given because values differ in function of stabilizer used for preparing the EA-loaded nanoparticles; [¶]determined by Electronic Microscopy Analysis; ^adetermined by dynamic light scattering using zetasizer Nano ZS (Malvern Instruments, UK); ^bCyclodestrins; by SEM analysis.

[1] K. Sonaje, J. L. Italia, G. Sharma, V. Bhardwaj, K. Tikoo, M. N. Kumar, Pharm. Res. 2007, 24, 899-908.

[2] I. Bala et al., Nanotechnol. 2005, 16, 2819.

[3] A. M. Avachat, V. G. Patel, Saudi Pharm. J. 2015, 23, 276-289.

- [4] S. Madrigal-Carballoa, S. Limb, G. Rodrigueza, A. O. Vilac, C. G. Kruegerb, S. Gunasekaranb, J. D. Reed, *J. Funct. Foods* **2010**, *2*, 99-106.
- [5] H. Hajipour, H. Hamishehkar, M. Rahmati-yamchi, D. Shanehbandi, S. Nazari Soltan Ahmad, et al. Int. J. Cancer Manag. 2018, 11, e9402.
- [6] V. D. Bulani et al. J. Mol. Struct. 2016, 1105, 308-315.