Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information

Hydrogenolysis of carbon-carbon σ -bond using water catalyzed by

semi-rigid diiridium(III) porphyrins

Ching Wai Fong^a, Ho Yin Yu^a, Claude P. Gros^b and Kin Shing Chan^{*a}

^aDepartment of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories,

Hong Kong SAR, The People's Republic of China. E-mail: ksc@cuhk.edu.hk

^bICMUB (UMR CNRS 6302), Université de Bourgogne Franche-Comté, 21 000 Dijon, France.

Content	Page
General Procedures	S2
Experimental Instrumentation	S2
Synthesis of Various Iridium(III) Diporphyrin	S3
Catalytic Hydrogenation of PCP with Water by Diiridium(III) Porphyrin	S8
¹ H NMR Reaction Progress of the Independent Experiment in the Absence of PCP	S9
¹ H NMR and ¹³ C Spectra	
¹ H NMR Spectrum of H ₂ (ttp-OH)	S10
¹ H NMR Spectrum of H ₄ (dpmx)(ttp)	S10
¹ H NMR Spectrum of Ir ^{III} ₂ (dpmx)(ttp)(CO) ₂ Cl ₂	S11
¹ H NMR Spectrum of Ir ^{III} ₂ (dpmx)(ttp)Me ₂	S11
¹ H NMR Spectrum of Ir ^{III} ₂ (dpmx)(ttp) ⁱ Pr ₂	S12
¹ H NMR Spectrum of H ₄ (dppx)(ttp)	S12
¹ H NMR Spectrum of Ir ^{III} ₂ (dppx)(ttp)(CO) ₂ Cl ₂	S13
¹ H NMR Spectrum of Ir ^{III} ₂ (dppx)(ttp)Me ₂	S13
¹ H NMR Spectrum of Ir ^{III} ₂ (dppx)(ttp) ⁱ Pr ₂	S14
¹³ C NMR Spectrum of Ir ^{III} ₂ (dpmx)(ttp)Me ₂	S14
¹³ C NMR Spectrum of Ir ^{III} ₂ (dpmx)(ttp) ⁱ Pr ₂	S15
¹³ C NMR Spectrum of H ₄ (dppx)(ttp)	S15

13
C NMR Spectrum of Ir^{III}₂(dppx)(ttp)(CO)₂Cl₂ S16

 13 C NMR Spectrum of $Ir^{III}_{2}(dppx)(ttp)Me_2$ S16

 13 C NMR Spectrum of $Ir^{III}_{2}(dppx)(ttp)^{i}Pr_{2}$ S17

General Procedures

Unless otherwise noted, all reagents were purchased from commercial suppliers and directly used without further purification. Hexane was distilled from anhydrous calcium chloride. Benzene and toluene were distilled from sodium. *N*,*N*-Dimethylformamide (DMF) was distilled from magnesium sulfate under reduced pressure. Thin layer chromatography was performed on Merck pre-coated silica gel 60 F_{254} plates. Silica gel (Merck, 70-230) was used for column chromatography.

All bond activation reactions were carried out inside thick-wall glass tubes equipped with a Rotaflo stopper. The glass tubes were covered by aluminum foil to avoid photochemical reactions. All reactions in 0.5 mL benzene- d_6 were carried out in a flame-sealed NMR tube in vacuum with the reaction mixture degassed with three freeze (77 K)-pump (0.005 mmHg)-thaw cycles, then heated in oven in dark and wrapped with aluminum foil to protect from exposure to room light before ¹H NMR measurements. The NMR yields were with benzene residue as the internal standard. Benzene stock solutions of Ir^{III}(linker)(ttp)R₂ (linker = dpmx or dppx, R = Me or ⁱPr) were prepared separately, transferred to the reaction vessel and dried under vacuum at room temperature to obtain anhydrous starting materials. Benzene- d_6 stock solution of [2.2]paracyclophane was prepared separately and transferred to the reaction vessel.

Experimental Instrumentation

¹H NMR and ¹³C{¹H} NMR spectra were recorded on a Bruker DPX-400 spectrometer at 400 MHz and Bruker DPX-400 at 100 MHz or Bruker DPX-700 at 175 MHz respectively. Chemical shifts were referenced to the residual solvent protons in C₆D₆ (δ = 7.15 ppm), CDCl₃ (δ = 7.26 ppm) or tetramethylsilane (δ = 0.00 ppm) in ¹H NMR spectra and CDCl₃ (δ = 77.16 ppm) in ¹³C NMR spectra as the internal standards. Chemical shifts (δ) were reported as part per million (ppm) in (δ)

scale downfield from TMS. Coupling constants (J) were reported in Hertz (Hz).

High resolution mass spectra (HRMS) were recorded on a Bruker SolariX 9.4 Tesla FTICR MS mass spectrometer in electrospray ionization (ESI) mode using chloroform/methanol = 1:1 as solvent or on Bruker Autoflex speed MALDI-TOF instrument using *trans*-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) as the matrix and dichloromethane as the solvent.

Synthesis of Various Iridium(III) Diporphyrin

Preparation of 5-(4-hydroxyphenyl)-10,15,20-tritolylporphyrin, H₂(**ttp-OH) (1)**. To the refluxing 4-hydroxybenzaldehyde (4.6 g, 37.7 mmol) and 4-tolualdehyde (13.4 mL, 112.9 mmol) in 250 mL propionic acid, pyrrole (10.5 mL, 150.2 mmol) was added slowly. The colourless solution turned to deep purple quickly. The solution was then turned to dark brown in colour after refluxed for 2 h. The reaction mixture was allowed to cool down and crude purple solid was obtained upon suction filtration with several washings with cold methanol. The crude solid was purified by column chromatography on silica gel (70-230 mesh) eluting with CH₂Cl₂:hexanes = 2:1. The purple fraction was collected and rotary evaporated to obtain purple solid. Recrystallization from CH₂Cl₂/MeOH yields purple solid (1.30 g, 1.98 mmol, 5%). R_f = 0.12 (CH₂Cl₂:hexane = 2:1). ¹H NMR (400 MHz, CDCl₃): δ -2.78 (s, 2 H), 2.71 (s, 9 H), 7.17 (d, *J* = 8.3 Hz, 2 H), 7.55 (d, *J* = 7.7 Hz, 6 H), 8.06 (d, *J* = 8.3 Hz, 2 H), 8.10 (d, *J* = 8.2 Hz, 6 H), 8.85 (s, 8 H). HRMS (MALDI/TOF-MS): Calcd. For (C₄₇H₃₆N₄O)⁺: m/z 672.28891. Found m/z 672.3002.

Preparation of 5,10,15-tritolyl-20-[4-[α,α'-[*p*-(10,15,20-tritolyl-5-porphyrinyl)-phenoxy]

-*m*-xyloxy]phenyl]porphyrin, H₄(dpmx)(ttp) (2). A mixture of 1 (541 mg, 0.805 mmol) and α, α' -dibromo-*m*-xylene (106 mg, 0.402 mmol) was stirred with K₂CO₃ (1.11 g, 8.03 mmol) in 125 mL DMF at room temperature for 1 d. Solvent was distilled under high vacuum and the crude solid was purified by column chromatography on silica gel (70-230 mesh) eluting with CH₂Cl₂:hexanes =

2:1. The dark purple fraction was collected and rotary evaporated to obtain dark purple solid. Recrystallization from CH₂Cl₂/MeOH yields dark purple solid (314 mg, 0.217 mmol, 58%). R_f = 0.55 (CH₂Cl₂:hexane = 2:1). ¹H NMR (400 MHz, CDCl₃): δ -2.76 (s, 4 H), 2.67 (s, 12 H), 2.71 (s, 6 H), 5.47 (s, 4 H), 7.43 (d, *J* = 8.6 Hz, 4 H), 7.51-7.56 (2 d overlap, 12 H), 7.69-7.71 (m, 3 H), 7.92 (s, 1 H), 8.06-8.10 (2 d overlap, 12 H), 8.17 (d, *J* = 8.5 Hz, 4 H), 8.85-8.90 (m, 16 H). HRMS (MALDI/TOF-MS): Calcd. For (C₁₀₂H₇₈O₂N₈)⁺: m/z 1447.62477. Found m/z 1446.6534.

Preparation of Ir^{III}₂(dpmx)(ttp)(CO)₂Cl₂ (3). In a 100 mL round bottom flask with a reflux condenser, a solution of $[Ir^{I}(cod)Cl]_{2}$ (93 mg, 0.138 mmol) and **2** (51 mg, 0.035 mmol) in 50 mL *p*-xylene was refluxed for 2 d. Solvent was distilled under high vacuum and the crude solid was purified by column chromatography on silica gel (70-230 mesh) eluting with CH₂Cl₂:hexanes = 5:1. The red fraction was collected and rotary evaporated to obtain red solid. The major red fraction was collected and rotary evaporated to obtain red solid. Recrystallization from CH₂Cl₂/MeOH yields red solid (42 mg, 0.022 mmol, 62%). R_f = 0.58 (CH₂Cl₂:hexanes = 5:1). ¹H NMR (400 MHz, CDCl₃): δ 2.73 (s, 18 H), 5.49 (s, 4 H), 7.48 (d, *J* = 8.1 Hz, 4 H), 7.61 (d, *J* = 8.1 Hz, 12 H), 7.67-7.74 (m, 3 H), 7.95 (s, 1 H), 8.14 (d, *J* = 7.2 Hz, 6 H), 8.20 (d, *J* = 5.7 Hz, 8 H), 8.27 (d, *J* = 8.2, 2.0 Hz, 2 H), 8.99-9.03 (m, 16 H). HRMS (ESI/FTICR-MS): Calcd. For (C₁₀₄H₇₄Cl₂Ir₂N₈O₄ + Na)⁺: m/z 1977.45369. Found m/z 1977.4585.

Preparation of Ir^{III}₂(dpmx)(ttp)Me₂ (4). A suspension of **3** (47 mg, 0.024 mmol) in 1 mL THF in a Teflon screw head stoppered tube and a solution of NaBH₄ (20 mg, 0.53 mmol) in aqueous NaOH (1 M, 1 mL) in a Schlenk tube were purged with N₂ for 15 min separately. The NaBH₄ solution was added slowly to the suspension of **3** via a cannula. The mixture was heated at 70 °C under N₂ for 2 h to give a brown suspension. The reaction was then cooled to room temperature and iodomethane (6 μ L, 0.097 mmol) was added under N₂. The reaction mixture was further heated at 70 °C for 2 h to give a reddish brown suspension. It was worked up by extraction with CH₂Cl₂/H₂O. The organic

layer was rotary evaporated. The crude solid was purified by column chromatography on silica gel eluting with CH₂Cl₂/hexane = 1:1. The major red fraction was collected and dried to give reddish purple solid (33 mg, 0.018 mmol, 73%). $R_f = 0.81$ (CH₂Cl₂/hexane = 2:1). ¹H NMR (CDCl₃, 400 MHz) δ -6.29 (s, 6 H), 2.66 (s, 12 H), 2.68 (s, 6 H), 5.42 (s, 4 H), 7.37-7.39 (m, 4 H), 7.49-7.51 (m, 12 H), 7.60-7.62 (m, 1 H), 7.66 (d, *J* = 7.4 Hz, 2 H), 7.87 (s, 1 H), 7.98-8.03 (m, 12 H), 8.07-8.11 (m, 4 H), 8.51-8.56 (m, 16 H). ¹³C{¹H} NMR (CDCl₃, 175 MHz) δ 21.7, 30.3, 70.3, 113.3, 123.5, 124.0, 127.1, 127.6, 127.6, 129.0, 129.1, 131.1, 131.3, 131.4, 131.4, 132.3, 133.7, 133.9, 134.6, 134.9, 135.1, 137.3, 137.6, 138.8, 143.4, 143.5, 158.5. HRMS (ESI/FTICR-MS) calcd. for (C₁₀₄H₈₀Ir₂N₈O₂ + Na)⁺: m/z 1881.55741. Found: m/z 188155625.

Preparation of Ir^{III}₂(**dpmx**)(**ttp**)ⁱ**Pr**₂ (5). A suspension of 3 (49 mg, 0.025 mmol) in 1 mL THF in a Teflon screw head stoppered tube and a solution of NaBH₄ (20 mg, 0.53 mmol) in aqueous NaOH (1 M, 1 mL) in a Schlenk tube were purged with N₂ for 15 min separately. The NaBH₄ solution was added slowly to the suspension of 3 via a cannula. The mixture was heated at 70 °C under N₂ for 2 h to give a brown suspension. The reaction was then cooled to room temperature and 2-iodopropane (10 µL, 0.10 mmol) was added under N₂. The reaction mixture was further heated at 70 °C for 2 h to give a reddish brown suspension. It was worked up by extraction with CH₂Cl₂/H₂O. The organic layer was rotary evaporated. The crude solid was purified by column chromatography on silica gel eluting with CH₂Cl₂/hexane = 1:1. The major red fraction was collected and dried to give reddish purple solid (30 mg, 0.016 mmol, 63%). R_f = 0.77 (CH₂Cl₂/hexane = 1:1). δ -5.07 (septet, 2 H), -4.43 (d, 12 H), 2.70 (s, 18 H), 5.42 (s, 4 H), 7.35-7.38 (m, 4 H), 7.48-7.53 (m, 12 H), 7.58 (s, 1 H), 7.61-7.63 (d, 2 H), 7.83 (s, 1 H), 7.98 (d, 6 H), 8.03 (d, 6 H), 8.09 (d, 2 H), 8.48-8.54 (m, 16 H). ¹³C {¹H} NMR (CDCl₃, 175 MHz) δ -3.0, 21.5, 21.7, 70.3, 113.2, 113.5, 124.4, 124.8, 124.8, 127.2, 127.6, 127.6, 129.2, 131.3, 131.4, 131.4, 131.5, 133.5, 133.6, 133.9, 134.0, 134.6, 134.7, 135.1, 137.3, 137.6, 138.8, 143.7, 143.7, 143.8, 158.5.

Preparation of 5,10,15-tritolyl-20-[4- $[\alpha, \alpha'-[p-(10,15,20-tritolyl-5-porphyrinyl)$ -phenoxy]

-*p*-xyloxy|phenyl|porphyrin, H₄(dppx)(ttp) (6). A mixture of **1** (200 mg, 0.297 mmol) and α,α'-dibromo-*m*-xylene (40 mg, 0.150 mmol) was stirred with K₂CO₃ (0.500 g, 3.62 mmol) in 20 mL DMF at room temperature for 3 d. Solvent was distilled under high vacuum and the crude solid was purified by column chromatography on silica gel (70-230 mesh) eluting with chloroform. The dark purple fraction was collected and rotary evaporated to obtain dark purple solid. Recrystallization from CH₂Cl₂/MeOH yields dark purple solid (138.6 mg, 0.0957 mmol, 64%). R_f = 0.34 (CH₂Cl₂:hexanes = 2:1). ¹H NMR (400 MHz, CDCl₃): δ -2.76 (s, 4 H), 2.70 (s, 9 H), 2.71 (s, 9 H), 5.45 (s, 4 H), 7.41 (d, *J* = 8.5 Hz, 4 H), 7.54-7.57 (m, 12 H), 7.78 (s, 4 H), 8.08-8.10 (2 d overlap, 12 H), 8.16 (d, *J* = 8.5 Hz, 4 H), 8.85-8.90 (m, 16 H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 21.7, 70.3, 113.2, 113.8, 119.8, 120.2, 127.5, 128.3, 129.6, 131.3, 134.7, 135.0, 135.2, 135.8, 137.2, 137.5, 139.4, 158.7. HRMS (MALDI/TOF-MS): Calcd. For (C₁₀₂H₇₈O₂N₈)⁺: m/z 1447.62477. Found m/z 1446.7447.

Preparation of Ir^{III}₂(**dppx**)(**ttp**)(**CO**)₂**Cl**₂ (7). In a 100 mL round bottom flask with a reflux condenser, a solution of $[Ir^{I}(cod)Cl]_{2}$ (121 mg, 0.180 mmol) and **6** (65 mg, 0.045 mmol) in 50 mL *p*-xylene was refluxed for 2 d. After Solvent was distilled off under high vacuum, the solid was purified by column chromatography on silica gel (70-230 mesh) eluting with CHCl₃:hexanes = 5:1. The major red fraction was collected and rotary evaporated to obtain red solid. Recrystallization from CH₂Cl₂/MeOH gave red solid (57 mg, 0.029 mmol, 65%). R_f = 0.24 (CHCl₃:hexanes = 5:1). ¹H NMR (400 MHz, CDCl₃): δ 2.69 (s, 9 H), 2.71 (s, 9 H), 5.44 (d, *J* = 9.9 Hz, 4 H), 7.38 (d, *J* = 8.5 Hz, 2 H), 7.43 (d, *J* = 8.6 Hz, 2 H), 7.51-7.53 (m, 6 H), 7.58 (d, *J* = 7.7 Hz, 6 H), 7.77-7.79 (m, 4 H), 8.02 (s, 6 H), 8.10 (d, *J* = 8.2 Hz, 4 H), 8.16 (d, *J* = 7.7 Hz, 4 H), 8.22 (d, *J* = 7.7 Hz, 2 H), 8.47-8.50 (m, 8 H), 8.94-8.99 (m, 8 H). ¹³C{¹H} NMR (175 MHz, CDCl₃): δ 21.7, 70.2, 113.3, 133.5, 121.8, 122.2, 123.7, 124.1, 127.6, 127.8, 128.0, 128.3, 128.9, 131.4, 131.9, 132.0, 133.4, 133.8, 134.0, 134.3, 134.5, 135.0, 135.5, 135.7, 137.0, 137.2, 137.8, 138.3, 138.8, 138.9, 141.2, 141.4, 143.3, 134.3, 134.5, 135.0, 135.5, 135.7, 137.0, 137.2, 137.8, 138.3, 138.8, 138.9, 141.2, 141.4, 143.3, 134.5, 134.5, 135.0, 135.5, 135.7, 137.0, 137.2, 137.8, 138.3, 138.8, 138.9, 141.2, 141.4, 143.3, 134.5, 134.5, 135.0, 135.5, 135.7, 137.0, 137.2, 137.8, 138.3, 138.8, 138.9, 141.2, 141.4, 143.3, 134.5, 134.5, 135.0, 135.5, 135.7, 137.0, 137.2, 137.8, 138.3, 138.8, 138.9, 141.2, 141.4, 143.3, 134.5, 134.5, 135.0, 135.5, 135.7, 137.0, 137.2, 137.8, 138.3, 138.8, 138.9, 141.2, 141.4, 143.3, 134.5, 134.5, 135.0, 135.5, 135.7, 137.0, 137.2, 137.8, 138.3, 138.8, 138.9, 141.2, 141.4, 143.3, 134.5, 134.5, 135.5, 135.7, 137.0, 137.2, 137.8, 138.3, 138.8, 138.9, 141.2, 141.4, 143.3, 134.5, 134.5, 135.5, 135.7, 137.0, 137.2, 137.8, 138.3, 138.8, 138.9, 141.2, 141.4, 143.3, 134.5, 134.5, 135.5, 135.5, 135.7, 137

158.9.

Preparation of Ir^{III}₂(dppx)(ttp)Me₂ (8). A suspension of 7 (21 mg, 0.011 mmol) in 1 mL THF in a Teflon screw head stoppered tube and a solution of NaBH₄ (8.3 mg, 0.22 mmol) in aqueous NaOH (1 M, 1 mL) in a Schlenk tube were purged with N₂ for 15 min separately. The NaBH₄ solution was added slowly to the suspension of **7** via a cannula. The mixture was heated at 70 °C under N₂ for 2 h to give a brown suspension. The reaction was then cooled to room temperature and iodomethane (3 µL, 0.043 mmol) was added under N₂. The reaction mixture was further heated at 70 °C for 2 h to give a reddish brown suspension. It was worked up by extraction with CHCl₃/H₂O. The organic layer was rotary evaporated. The crude solid was purified by column chromatography on silica gel eluting with CHCl₃/hexane = 2:1. The major red fraction was collected and dried to give reddish purple solid (10 mg, 0.0054 mmol, 50%). R_f = 0.75 (CH₂Cl₂/hexane = 2:1). ¹H NMR (CDCl₃, 400 MHz) *δ* -6.28 (s, 6 H), 2.68 (s, 18 H), 5.41 (s, 4 H), 7.37 (d, *J* = 8.4 Hz, 4 H), 7.52 (d, *J* = 7.3 Hz, 12 H), 7.75 (s, 4 H), 7.99-8.04 (m, 14 H), 8.06-8.07 (m, 2 H), 8.52-8.55 (m, 16 H). ¹³C {¹H} NMR (175 MHz, CDCl₃): *δ* 21.7, 30.4, 70.1, 113.1, 113.2, 123.5, 124.0, 127.6, 127.6, 128.3, 131.4, 133.7, 133.9, 134.5, 134.8, 135.0, 137.0, 137.3, 138.8, 143.3, 143.5, 158.5. HRMS (ESI/FTICR-MS): Calcd. For (C₁₀₄H₈₀Ir₂N₈O₂)⁺: m/z 1858.56764. Found m/z 1858.57146.

Preparation of Ir^{III}₂(dppx)(ttp)ⁱPr₂ (9). A suspension of 7 (21 mg, 0.011 mmol) in 1 mL THF in a Teflon screw head stoppered tube and a solution of NaBH₄ (8.3 mg, 0.22 mmol) in aqueous NaOH (1 M, 1 mL) in a Schlenk tube were purged with N₂ for 15 min separately. The NaBH₄ solution was added slowly to the suspension of 7 via a cannula. The mixture was heated at 70 °C under N₂ for 2 h to give a brown suspension. The reaction was then cooled to room temperature and 2-iodopropane (4 μ L, 0.43 mmol) was added under N₂. The reaction mixture was further heated at 70 °C for 2 h to give a reddish brown suspension. It was worked up by extraction with CHCl₃/H₂O. The organic layer was rotary evaporated. The crude solid was purified by column chromatography on silica gel eluting with

CHCl₃/hexane = 2:1. The major red fraction was collected and dried to give reddish purple solid (12 mg, 0.0061 mmol, 56%). $R_f = 0.76$ (CH₂Cl₂/hexane = 2:1). ¹H NMR (CDCl₃, 400 MHz) δ -5.07 (septet, 2 H), -4.43 (d, J = 6.5 Hz, 12 H), 2.70 (s, 18 H), 5.42 (s, 4 H), 7.37-7.40 (m, 4 H), 7.52-7.55 (m, 12 H), 7.74-7.75 (m, 4 H), 8.01 (d, J = 6.8 Hz, 6 H), 8.05 (d, J = 6.5 Hz, 8 H), 8.11 (d, J = 7.7 Hz, 2 H), 8.51-8.58 (m, 16 H). ¹³C{¹H} NMR (175 MHz, CDCl₃): δ -3.0, 21.5, 21.7, 70.1, 113.1, 113.1, 124.3, 124.7, 124.8, 127.6, 127.6, 128.2, 131.4, 131.4, 131.4, 133.5, 134.0, 134.5, 134.6, 135.1, 137.0, 137.3, 138.8, 143.6, 143.8, 158.4. HRMS (ESI/FTICR-MS): Calcd. For (C₁₀₄H₈₀Ir₂N₈O₂)⁺: m/z 1914.63033. Found m/z 1914.63138.

Catalytic Hydrogenation of PCP with Water by Iridium(III) Diporphyrin

With $Ir^{III}_{2}(dpmx)(ttp)Me_{2}$. $Ir^{III}_{2}(dpmx)(ttp)Me_{2}$ (0.45 mg, 0.00024 mmol), H₂O (8.6 µL, 0.48 mmol) and benzene-*d*₆ stock solution (500 µL) of PCP (1.0 mg, 0.0048 mmol) were added successively to a NMR tube. The orange mixture was degassed for three freeze-pump-thaw cycles and the NMR tube was flame-sealed under vacuum. It was heated at 200 °C in the dark for 40 h. It was monitored with ¹H NMR spectroscopy at particular time intervals and the NMR yields were taken. 4,4'-Dimethylbibenzyl 11 was formed in 27% yield. Some precipitate was observed at the bottom of the sealed tube.

With $Ir^{III}_{2}(dpmx)(ttp)^{i}Pr_{2}$. $Ir^{III}_{2}(dpmx)(ttp)^{i}Pr_{2}$ (0.46 mg, 0.00024 mmol), H₂O (8.6 µL, 0.48 mmol) and benzene-*d*₆ stock solution (500 µL) of PCP (1.0 mg, 0.0048 mmol) were added successively to a NMR tube. The orange mixture was degassed for three freeze-pump-thaw cycles and the NMR tube was flame-sealed under vacuum. It was heated at 200 °C in the dark for 40 h. It was monitored with ¹H NMR spectroscopy at particular time intervals and the NMR yields were taken. 4,4'-Dimethylbibenzyl **11** was formed in 40% yield. Some precipitate was observed at the bottom of the sealed tube.

With $Ir^{III}_{2}(dppx)(ttp)Me_{2}$. $Ir^{III}_{2}(dppx)(ttp)Me_{2}$ (0.45 mg, 0.00024 mmol), H₂O (8.6 µL, 0.48 mmol) and benzene-*d*₆ stock solution (500 µL) of PCP (1.0 mg, 0.0048 mmol) were added successively to a NMR tube. The orange mixture was degassed for three freeze-pump-thaw cycles and the NMR tube was flame-sealed under vacuum. It was heated at 200 °C in the dark for 40.5 h. It was monitored with ¹H NMR spectroscopy at particular time intervals and the NMR yields were taken. 4,4'-Dimethylbibenzyl **11** was formed in 59% yield. Some precipitate was observed at the bottom of the sealed tube.

With $Ir^{III}_{2}(dppx)(ttp)^{i}Pr_{2}$. $Ir^{III}_{2}(dpmx)(ttp)^{i}Pr_{2}$ (0.46 mg, 0.00024 mmol), H₂O (8.6 µL, 0.48 mmol) and benzene-*d*₆ stock solution (500 µL) of PCP (1.0 mg, 0.0048 mmol) were added successively to a NMR tube. The orange mixture was degassed for three freeze-pump-thaw cycles and the NMR tube was flame-sealed under vacuum. It was heated at 200 °C in the dark for 31.5 h. It was monitored with ¹H NMR spectroscopy at particular time intervals and the NMR yields were taken. 4,4'-Dimethylbibenzyl **11** was formed in 66% yield. Some precipitate was observed at the bottom of the sealed tube.

¹H NMR and ¹³C Spectra

¹H NMR Spectrum of H₂(ttp-OH)

¹H NMR Spectrum of H₄(dpmx)(ttp)

¹H NMR Spectrum of Ir^{III}₂(dpmx)(ttp)(CO)₂Cl₂

¹H NMR Spectrum of Ir^{III}₂(dpmx)(ttp)Me₂

¹H NMR Spectrum of Ir^{III}₂(dpmx)(ttp)ⁱPr₂

¹H NMR Spectrum of H₄(dppx)(ttp)

¹H NMR Spectrum of Ir^{III}₂(dppx)(ttp)(CO)₂Cl₂

¹H NMR Spectrum of Ir^{III}₂(dppx)(ttp)Me₂

¹H NMR Spectrum of Ir^{III}₂(dppx)(ttp)ⁱPr₂

¹³C NMR Spectrum of Ir^{III}₂(dpmx)(ttp)Me₂

¹³C NMR Spectrum of Ir^{III}₂(dpmx)(ttp)ⁱPr₂

¹³C NMR Spectrum of H₄(dppx)(ttp

)

¹³C NMR Spectrum of Ir^{III}₂(dppx)(ttp)(CO)₂Cl₂

¹³C NMR Spectrum of Ir^{III}₂(dppx)(ttp)Me₂

¹³C NMR Spectrum of Ir^{III}₂(dppx)(ttp)ⁱPr₂

