Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supplementary Material

Investigation of Cation Binding and Sensing by new Crown Ether core substituted Naphthalene Diimide systems

R. P. Cox,^a S. Sandanayake^{a,b} D. L. A. Scarborough,^{a,c} E. I. Izgorodina,^a S. J. Langford^{a,d} and T. D. M. Bell^a

^a School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.

^b Addtec Pty Ltd, 264 George Street, Sydney, New South Wales 2000, Australia.

^c School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia.

^d Department of Chemistry and Biotechnology, Swinburne University, John Street, Hawthorn, Victoria 3122, Australia

1. Materials and Methods

Chemical shifts (δ) were calibrated against the solvent peak. For ¹H NMR spectra each resonance was assigned according to the following convention: chemical shift (δ) measured in parts per million (ppm), multiplicity, coupling constant (*J*), number of protons and assignment. Multiplicities are denoted as (s) singlet, (d) doublet, (t) triplet, (q) quartet, (p) pentet, or (m) multiplet. For ¹³C NMR each resonance was assigned according to the following convention: chemical shift (δ) measured in parts per million (ppm) and assignment (where known).

2. Characterisation

Fig. S1 ¹H NMR spectrum of **5** (300 MHz, 303 K) in CDCl₃.

Fig. S2 13 C NMR spectrum of 5 (75 MHz, 303 K) in CDCl₃.

Fig. S3 High resolution mass spectrum (ESI^+) of **5**.

Fig. S4 ¹H NMR spectrum of 6 (300 MHz, 303 K) in CDCl₃.

Fig. S5 13 C NMR spectrum of 6 (75 MHz, 303 K) in CDCl₃.

Fig. S6 High resolution mass spectrum (ESI^+) of **6**.

3. Spectroscopic Materials and Methods

For molar absorptivity coefficient determination, 10 ml standards of concentrations ranging from 0 to 100 μ mol L⁻¹ were prepared in ethanol in 1.0 cm pathlength quartz cuvettes. The molar extinction coefficients were determined at the absorption maximum of 600 nm and found to be 12,500 M⁻¹cm⁻¹ and 13,900 M⁻¹cm⁻¹ for sensors **5** and **6**, respectively. Samples for determination of binding via a Job's plot were prepared for concentrations of **6** from 0 to 10 μ mol L⁻¹ every 0.5 μ M with a constant total molar concentration of **6** + salt of 10 μ mol L⁻¹. Stability constants were determined using the method of Bourson and Valeur (J. Phys. Chem., 1989, 3871-3876). Fluorescence quantum yields were determined by comparing areas under corrected emission spectra recorded under identical conditions with that of Rhodamine 101 which has a quantum yield of 1.0 in ethanol. (T. Karstens and K. Kobs, J. Phys. Chem., 1980, 84, 1871.)

Fig. S7 Concentration versus absorbance of 5 (left) and 6 (right) in EtOH at 600 nm.

Fig. S8 Excitation spectra of 5 (left) and 6 (right) in EtOH. Emission monitored at 640 nm.

Fig. S9 Job's plot determined over a range from 0-10 μ mol L⁻¹ for **6** with a constant concentration of **6** + KCl = 10 μ mol L⁻¹. Maximum Δ Absorbance occurs at ~0.50 mole fraction of **6** indicating 1:1 binding between **6** and K⁺. Δ Absorbance = measured absorbance – calculated absorbance where the calculated absorbance is [**6**/([**6**+KCl) multiplied by the measured absorbance of the 10 μ mol L⁻¹ solution of **6**. The absorbance was taken over the range 590 – 610 nm. KCl does not absorb over this range.

Fig. S10 Determination of stability constant between **5** and CaCl₂. $I_0/(I_F-I_0)$ versus $1/[CaCl_2]$. Stability constant is determined by the ratio intercept/slope = 3748 M⁻¹.

Fig. S11 Determination of stability constant between **6** and KCl. $Abs_0/(Abs-Abs_0)$ versus 1/[KCl]. Stability constant is determined by the ratio intercept/slope = 138700 M⁻¹.

Fig. S12 Determination of stability constant between **6** and NaCl. $Abs_0/(Abs-Abs_0)$ versus 1/[NaCl]. Stability constant is determined by the ratio intercept/slope = 60730 M⁻¹.

Fig. S13 UV-Vis absorption spectra of 6 (10 μ M) in EtOH on addition of 0-3 equiv. of Na⁺ (as NaCl).

Fig. S14 Fluorescence spectra of **6** (10 μ M) in EtOH, on addition of chloride salts (50.0 equiv. of Ca²⁺, Li⁺, Mg²⁺, Na⁺, NH₄⁺, Zn²⁺ and K⁺). Excitation at 550 nm.

Fig. S15 Fluorescence spectra of 6 (10 μ M) in EtOH on addition of 0-5 equiv. of K⁺ (as KCl). Excitation at 550 nm.

Fig. S16 Excitation spectrum of 6-K⁺ in EtOH. Emission monitored at 640 nm.

Fig. S17 TCSPC decay profiles and fitted bi-exponential decay functions of **5** and **5** with CaCl₂ (10 μ M in EtOH). Excitation at 532 nm, IRF = instrument response function.

Table S1.	Time	resolved	data	for 5	5 and 5	with	$CaCl_2$	in	EtOH.
-----------	------	----------	------	-------	---------	------	----------	----	-------

	τ_1 (ns)	%	$\tau_2(ns)$	%	χ^2
5	0.05	82	9.00	18	1.003
5-Ca ²⁺	2.53	23	7.19	77	1.084

Structure	Cation	Unbound λ _{max} (nm)	Bound λ_{\max} (nm)	$\Delta \lambda_{\max} (nm)$	Cation-NDI interaction energy (kJ mol ⁻¹ z ⁻¹)
Higher energy st	ructures				
5	Ca^{2+}	500	463	-37	-79.6
6	Na^+	499	506	7	-30.4
6	K^+	483	482	-1	-67.3

Table S2. M06-2X TD-DFT absorbances for 5 and 6 in the bound and unbound states.

Compound	Orbital	Unbound	Bound
5 with Ca ²⁺	LUMO		
	номо		
6 with K ⁺	LUMO		
	номо		
6 with Na ⁺	LUMO		
	номо		

Fig. S18 HOMOs and LUMOs calculated at HF/6-311++G(2d,2p) level of theory of **5** with Ca^{2+} (upper panels), **6** with K⁺ (centre panels) and **6** with Na⁺ (lower panels)