A multi-metal PtAgAu@CeO₂ core-shell nanocatalyst with improved catalytic performance

Chao Zhang,*a Xi Cheng, a ZhenMei Guo b and Zhiguo Lv*a

a. State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

Corresponding author E-mail:czchem99999@163.com; lvzhiguo@qust.edu.cn

b.College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Characterization

Transmission electron microscopy (TEM) experiments were conducted on a JEM-1230 microscope operated at 100 kV. The TEM samples were prepared by transferring one drop of sample dispersion in ethanol onto a carbon-coated copper grid and then dried in air. Energy dispersion X-ray analysis (EDX) were conducted on a JEM-1230 microscope operated at 100 kV.

Catalytic evaluation

The reduction of 4-NP to 4-AP was chosen as a model reaction to study the catalytic properties. In a typical run, 4-NP (0.03 mL, 0.01 M, aqueous solution), H_2O (2 mL) and nanocatalyst (0.5 mL ,1 mg/mL) were mixed with freshly prepared NaBH₄ (0.5 mL, 0.25 M, aqueous solution) in a quartz cell (3.0 mL). The absorption spectra were recorded on a UV-Vis spectrophotometer at a regular interval in the range of 250-700 nm.

Fig. S1 The EDX analysis of $Pt-Ag-Au@SiO_2$.

Fig. S2 XPS peaks of Au 4f in PtAgAu@SiO₂ nanospheres.

Element	Content (wt %)		
Au	1.3142		
Ag	0.7574		
Pt	3.2816		

Table S1 ICP analysis of PtAgAu@CeO₂.

Table S2 Comparison of rate constant for the catalytic reduction of 4-NP by NaBH₄

Catalyst	Initial concentration of 4-NP (mM)	Amount of noble NPs (nmol)	k _{app} per noble NPs content (min ⁻¹ μmol ⁻¹)	The multiple of k _{napp}
PtAgAu@CeO2 (This work)	0.1	152	1.65	1
PtCo/NaY ¹	7.2	579.5	1.0332	1.6
Au@SiO ₂ ²	0.1	135.9	0.84	1.96
Fe ₃ O ₄ @SiO ₂ -Au@mSiO ₂ ³	0.24	335	1.044	1.58
porous AuPt particles ⁴	0.24	2564	1.287	1.28
ultra-small Pt NPs ⁵	0.14	510	2.472	0.67

using Pt-based nanocatalysts.

Fig. S3 Conversion of 4-NP in four successive cycles

with PtAgAu@CeO₂ nanocatalyst.

References

- 1. Z. M. El-Bahy, Appl. Catal. A-Gen., 2013, 468, 175-183.
- 2. Z. Wang, H. Fu, D. Han and F. Gu, J. Mater. Chem. A, 2014, 2, 20374-20381.
- 3. Y. Deng, Y. Cai, Z. Sun, J. Liu, C. Liu, J. Wei, W. Li, C. Liu, Y. Wang and D. Zhao, *J. Am. Chem. Soc.*, 2010, **132**, 8466-8473.
- 4. A. J. Ma, J. Xu, X. H. Zhang, B. Zhang, D. Y. Wang and H. L. Xu, Sci. Rep-Uk, 2014, 4.
- 5. T. Maji, S. Banerjee, M. Biswas and T. K. Mandal, *RSC Adv.*, 2014, **4**, 51745-51753.